Associative Cones and Integrable System

Chuu-Lian Terng* , Shengli Kong , Erxiao Wang

Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (2) : 153 -168.

PDF
Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (2) : 153 -168. DOI: 10.1007/s11401-005-0447-7
Original Articles

Associative Cones and Integrable System

Author information +
History +
PDF

Abstract

We identify ℝ7 as the pure imaginary part of octonions. Then the multiplication in octonions gives a natural almost complex structure for the unit sphere S 6. It is known that a cone over a surface M in S 6 is an associative submanifold of ℝ7 if and only if M is almost complex in S 6. In this paper, we show that the Gauss-Codazzi equation for almost complex curves in S 6 are the equation for primitive maps associated to the 6-symmetric space G 2=T 2, and use this to explain some of the known results. Moreover, the equation for S 1-symmetric almost complex curves in S 6 is the periodic Toda lattice, and a discussion of periodic solutions is given.

Keywords

Octonions / Associative cone / Almost complex curve / Primitive map / 53 / 22E

Cite this article

Download citation ▾
Chuu-Lian Terng*, Shengli Kong, Erxiao Wang. Associative Cones and Integrable System. Chinese Annals of Mathematics, Series B, 2006, 27(2): 153-168 DOI:10.1007/s11401-005-0447-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adler Adv. Math., 1980, 38: 267

[2]

Adler, M., van Moerbeke, P. and Vanhaecke, P., Algebraic Integrability, Painlevé Geometry, and Lie Algebras, EMG, 47, Springer, 2004.

[3]

Bolton J. Reine Angew. Math., 1995, 459: 119

[4]

Bolton Quart. J. Math., Oxford Ser., 1994, 45: 407

[5]

Bryant J. Differential Geom., 1982, 17: 185

[6]

Burstall, F. E. and Pedit, F., Harmonic maps via Adler-Kostant-Symes Theory, Harmonic Maps and Integrable Systems, Vieweg, 1994, 221-272.

[7]

Calabi Trans. Amer. Math. Soc., 1958, 87: 407

[8]

Carberry J. London Math. Soc., 2004, 69: 531

[9]

Ejiri Trans. Amer. Math. Soc., 1983, 276: 347

[10]

Guest, M., Harmonic Maps, Loop Groups, and Integrable Systems, Cambridge University Press, 1997.

[11]

Harvey Acta Math., 1982, 148: 47

[12]

Haskins Amer. J. Math., 2004, 126: 845

[13]

Hashimoto Differential Geom. Appl., 2004, 21: 127

[14]

Kollross, A., Notes on G 2.

[15]

Ma Math. Z., 2005, 249: 241

[16]

McIntosh J. London Math. Soc., 2003, 67: 769

[17]

Pressley, A. and Segal, G. B., Loop Groups, Oxford Science Publ., Clarendon Press, Oxford, 1986.

[18]

Terng, C. L., Geometries and symmetries of soliton equations and integrable elliptic systems, Surveys on Geometry and Integrable Systems, Advanced Studies in Pure Mathematics, Mathematical Society of Japan, to appear. math.DG/0212372.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/