Curvature, Diameter and Bounded Betti Numbers

Zhongmin Shen , Jyh-Yang Wu*

Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (2) : 143 -152.

PDF
Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (2) : 143 -152. DOI: 10.1007/s11401-005-0398-z
Original Articles

Curvature, Diameter and Bounded Betti Numbers

Author information +
History +
PDF

Abstract

In this paper, we introduce the notion of bounded Betti numbers, and show that the bounded Betti numbers of a closed Riemannian n-manifold (M, g) with Ric (M) ≥ -(n - 1) and Diam (M) ≤ D are bounded by a number depending on D and n. We also show that there are only finitely many isometric isomorphism types of bounded cohomology groups ${\left( {\ifmmode\expandafter\hat\else\expandafter\^\fi{H}^{*} {\left( M \right)},{\left\| \cdot \right\|}_{\infty } } \right)}$ among closed Riemannian manifold (M, g) with K(M) ≥ - 1 and Diam (M) ≤ D.

Keywords

Diameter / Ricci curvature / Sectional curvature / Bounded cohomology / Bounded Betti number / 53C21 / 53C23

Cite this article

Download citation ▾
Zhongmin Shen, Jyh-Yang Wu*. Curvature, Diameter and Bounded Betti Numbers. Chinese Annals of Mathematics, Series B, 2006, 27(2): 143-152 DOI:10.1007/s11401-005-0398-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anderson J. Diff. Geom., 1990, 31: 265

[2]

Cheeger Ann. of Math., 1996, 144: 189

[3]

Cheeger J. Differ. Geom., 1997, 46: 406

[4]

Brooks, R., Some remarks on bounded cohomology, Riemann Surfaces and Related Topics, Proceedings of the 1978 Stony Brook Conference, Princeton University Press, 1980, 53-63.

[5]

Fukaya Japan J. Math., 1986, 12: 121

[6]

Fukaya Ann. of Math., 1992, 136: 253

[7]

Fukaya Math. Zeit., 1994, 216: 31

[8]

Gromov Comment. Math. Helv., 1981, 56: 179

[9]

Gromov Publ. Math. IHES, 1981, 53: 53

[10]

Gromov Publ. Math. IHES, 1981, 56: 213

[11]

Grove J. Differ. Geom., 1991, 33: 379

[12]

Gromov, M., Lafontaine, J. and Pansu, P., Structure Metrique Pour les Varites Riemanniennes, Cedic/Fernand Nathan, Paris, 1981.

[13]

Grove Invent. Math., 1990, 99: 205

[14]

Gallot C. R. Acad. Sci., Sér. I, Math., 1983, 296: 333

[15]

Hirsch Ann. of Math., 1975, 101: 369

[16]

Ivanov J. of Soviet Math., 1987, 37: 1090

[17]

Petersen V, P., Gromov-Hausdorff convergence of metric spaces, Proc. Symp. Pure Math., S.-T. Yau and R. Greene (eds.), Vol. 54, Part 3, 1993, 489-504.

[18]

Sha J. Differ. Geom., 1989, 29: 95

[19]

Wu, J.-Y., Hausdorff convergence and sphere theorems, Proc. Symp. Pure Math., S.-T. Yau and R. Greene (eds.), Vol. 54, Part 3, 1993, 685-692.

[20]

Wu Annals of Global Analysis and Geometry, 1998, 16: 371

[21]

Yamaguchi Ann. of Math., 1991, 133: 317

AI Summary AI Mindmap
PDF

484

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/