Geometry of Ricci Solitons*

Huai-Dong Cao

Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (2) : 121 -142.

PDF
Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (2) : 121 -142. DOI: 10.1007/s11401-005-0379-2
Original Articles

Geometry of Ricci Solitons*

Author information +
History +
PDF

Abstract

Ricci solitons are natural generalizations of Einstein metrics on one hand, and are special solutions of the Ricci flow of Hamilton on the other hand. In this paper we survey some of the recent developments on Ricci solitons and the role they play in the singularity study of the Ricci flow.

Keywords

Ricci soliton / Singularity of Ricci flow / Stability / Gaussian density / 53C21 / 53C25

Cite this article

Download citation ▾
Huai-Dong Cao. Geometry of Ricci Solitons*. Chinese Annals of Mathematics, Series B, 2006, 27(2): 121-142 DOI:10.1007/s11401-005-0379-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anderson J. A. M. S., 1989, 2: 455

[2]

Aubin Bull. Sci. Math., 1978, 102: 63

[3]

Bando, S. and Mabuchi, T., Uniqueness of Einstein Kähler metrics modulo connected group actions, Algebraic Geometry (Sendai, 1985), Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 11-40.

[4]

Bando Invent. Math., 1989, 97: 313

[5]

Besse, A. L., Einstein Manifolds, Ergebnisse, Ser. 3, 10, Springer-Verlag, Berlin, 1987.

[6]

Bryant, R., Local existence of gradient Ricci solitons, unpublished.

[7]

Bryant, R., Gradient Kähler Ricci solitons, arXiv.org/abs/math.DG/0407453.

[8]

Bryant, R., Goldschmidt, H., Morgan, J. and Ilmanen, T., in preparation.

[9]

Buzzanca Boll. Un. Mat. Ital. B, 1984, 3: 531

[10]

Cao Invent. Math., 1992, 109: 247

[11]

Cao, H.-D., Existence of gradient Kähler-Ricci solitons, Elliptic and Parabolic Methods in Geometry (Minneapolis, MN, 1994), A. K. Peters (ed.), Wellesley, MA, 1996, 1-16.

[12]

Cao J. Differential Geom., 1997, 45: 257

[13]

Cao Comm. Anal. Geom., 2004, 12: 305

[14]

Cao Comm. Anal. Geom., 2000, 8: 517

[15]

Cao, H.-D., Hamilton, R. S. and Ilmanen, T., Gaussian densities and stability for some Ricci solitons, arXiv:math.DG/0404165.

[16]

Cao, H.-D. and Sesum, N., A compactness result for Kähler-Ricci solitons, arXiv:math.DG/0504526.

[17]

Cao, H.-D. and Zhu, X. P., Ricci flow and its applications to three-manifolds, monograph in preparation.

[18]

Chau, A. and Tam, L.-F., Gradient Kähler-Ricci solitons and a uniformization conjecture, arXiv:math.DG/0310198.

[19]

Chave Nuclear Phys. B, 1996, 478: 758

[20]

Cheeger J. Diff. Geom., 1982, 17: 15

[21]

Chen Invent. Math., 2000, 140: 423

[22]

Chen Math. Ann., 2003, 327: 1

[23]

Chen Quart. J. of Pure and Appl. Math., 2005, 1: 68

[24]

Chen J. Diff. Geom., 2004, 67: 519

[25]

Cheng Amer. J. Math., 1981, 103: 1021

[26]

Chow Comm. Anal. Geom., 2004, 12: 59

[27]

Dai Invent. Math., 2005, 161: 151

[28]

Derdzinski, A. and Maschler, G., Compact Ricci Solitons, in preparation.

[29]

Drees Diff. Geom. Appl., 1994, 4: 77

[30]

Eschenburg J. Diff. Geom., 1989, 30: 155

[31]

Feldman J. Diff. Geom., 2003, 65: 169

[32]

Friedan Ann. Phys., 1985, 163: 318

[33]

Futaki Invent. Math., 1983, 73: 437

[34]

Gasqui Hokkaido Math. J., 1991, 20: 279

[35]

Gasqui J. Reine Angew. Math., 1996, 480: 1

[36]

Gasqui, J. and Goldschmidt, H., Radon Transforms and the Rigidity of the Grassmannians, Princeton University Press, 2004.

[37]

Goldschmidt, H., private communication.

[38]

Greene Duke Math. J., 1982, 49: 731

[39]

Gromoll Ann. Math., 1969, 90: 75

[40]

Guenther Comm. Anal. Geom., 2002, 10: 741

[41]

Hamilton J. Diff. Geom., 1982, 17: 255

[42]

Hamilton J. Diff. Geom., 1986, 24: 153

[43]

Hamilton Contemp. Math., 1988, 71: 237

[44]

Hamilton J. Diff. Geom., 1993, 37: 225

[45]

Hamilton J. Diff. Geom., 1993, 38: 1

[46]

Hamilton, R. S., The formation of singularities in the Ricci flow, Surveys in Differential Geometry (Cambridge, MA, 1993), 2, International Press, Combridge, MA, 1995, 7-136.

[47]

Huisken J. Diff. Geom., 1985, 21: 47

[48]

Ivey Diff. Geom. Appl., 1993, 3: 301

[49]

Koiso, N., On rotationally symmmetric Hamilton’s equation for Kähler-Einstein metrics, Recent Topics in Diff. Anal. Geom., Adv. Studies Pure Math., 18-I, Academic Press, Boston, MA, 1990, 327-337.

[50]

Mok Compositio Math., 1981, 44: 183

[51]

Ni, L., Ancient solution to Kahler-Ricci flow, arXiv:math:math.DG.0502494, 2005.

[52]

Ni J. Diff. Geom., 2003, 64: 457

[53]

Page Phys. Lett., 1978, 79B: 235

[54]

Perelmann, G., The entropy formula for the Ricci flow and its geometric applications, arXiv:math.DG/0211159 v1 November 11, 2002.

[55]

Perelmann, G., Ricci flow with surgery on three manifolds, arXiv:math.DG/0303109 v1 March 10, 2003.

[56]

Rothaus J. Funct. Anal., 1981, 42: 110

[57]

Sesum, N., Limiting behaviour of the Ricci flow, arXiv:DG.math.DG/0402194.

[58]

Tian Invent. Math., 1990, 101: 101

[59]

Tian Acta Math., 2000, 184: 271

[60]

Tian Comment. Math. Helv., 2002, 77: 297

[61]

Wang Adv. Math., 2004, 188: 87

[62]

Yau Comm. Pure Appl. Math., 1978, 31: 339

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/