Geometry of Ricci Solitons*
Huai-Dong Cao
Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (2) : 121 -142.
Geometry of Ricci Solitons*
Ricci solitons are natural generalizations of Einstein metrics on one hand, and are special solutions of the Ricci flow of Hamilton on the other hand. In this paper we survey some of the recent developments on Ricci solitons and the role they play in the singularity study of the Ricci flow.
Ricci soliton / Singularity of Ricci flow / Stability / Gaussian density / 53C21 / 53C25
| [1] |
|
| [2] |
|
| [3] |
Bando, S. and Mabuchi, T., Uniqueness of Einstein Kähler metrics modulo connected group actions, Algebraic Geometry (Sendai, 1985), Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 11-40. |
| [4] |
|
| [5] |
Besse, A. L., Einstein Manifolds, Ergebnisse, Ser. 3, 10, Springer-Verlag, Berlin, 1987. |
| [6] |
Bryant, R., Local existence of gradient Ricci solitons, unpublished. |
| [7] |
Bryant, R., Gradient Kähler Ricci solitons, arXiv.org/abs/math.DG/0407453. |
| [8] |
Bryant, R., Goldschmidt, H., Morgan, J. and Ilmanen, T., in preparation. |
| [9] |
|
| [10] |
|
| [11] |
Cao, H.-D., Existence of gradient Kähler-Ricci solitons, Elliptic and Parabolic Methods in Geometry (Minneapolis, MN, 1994), A. K. Peters (ed.), Wellesley, MA, 1996, 1-16. |
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
Cao, H.-D., Hamilton, R. S. and Ilmanen, T., Gaussian densities and stability for some Ricci solitons, arXiv:math.DG/0404165. |
| [16] |
Cao, H.-D. and Sesum, N., A compactness result for Kähler-Ricci solitons, arXiv:math.DG/0504526. |
| [17] |
Cao, H.-D. and Zhu, X. P., Ricci flow and its applications to three-manifolds, monograph in preparation. |
| [18] |
Chau, A. and Tam, L.-F., Gradient Kähler-Ricci solitons and a uniformization conjecture, arXiv:math.DG/0310198. |
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
Derdzinski, A. and Maschler, G., Compact Ricci Solitons, in preparation. |
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
Gasqui, J. and Goldschmidt, H., Radon Transforms and the Rigidity of the Grassmannians, Princeton University Press, 2004. |
| [37] |
Goldschmidt, H., private communication. |
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
Hamilton, R. S., The formation of singularities in the Ricci flow, Surveys in Differential Geometry (Cambridge, MA, 1993), 2, International Press, Combridge, MA, 1995, 7-136. |
| [47] |
|
| [48] |
|
| [49] |
Koiso, N., On rotationally symmmetric Hamilton’s equation for Kähler-Einstein metrics, Recent Topics in Diff. Anal. Geom., Adv. Studies Pure Math., 18-I, Academic Press, Boston, MA, 1990, 327-337. |
| [50] |
|
| [51] |
Ni, L., Ancient solution to Kahler-Ricci flow, arXiv:math:math.DG.0502494, 2005. |
| [52] |
|
| [53] |
|
| [54] |
Perelmann, G., The entropy formula for the Ricci flow and its geometric applications, arXiv:math.DG/0211159 v1 November 11, 2002. |
| [55] |
Perelmann, G., Ricci flow with surgery on three manifolds, arXiv:math.DG/0303109 v1 March 10, 2003. |
| [56] |
|
| [57] |
Sesum, N., Limiting behaviour of the Ricci flow, arXiv:DG.math.DG/0402194. |
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
/
| 〈 |
|
〉 |