PDF
Abstract
This study focuses on the anisotropic Besov-Lions type spaces B p,θ l(Ω;E 0,E) associated with Banach spaces E 0 and E. Under certain conditions, depending on l = (l 1, l 2,⋯, l n) and α = (α1, α2, ⋯, α n), the most regular class of interpolation space E α between E 0 and E are found so that the mixed differential operators D α are bounded and compact from B p,θ l+s(Ω;E 0,E) to B p,θ s(Ω;E α). These results are applied to concrete vector-valued function spaces and to anisotropic differential-operator equations with parameters to obtain conditions that guarantee the uniform B separability with respect to these parameters. By these results the maximal B-regularity for parabolic Cauchy problem is obtained. These results are also applied to infinite systems of the quasi-elliptic partial differential equations and parabolic Cauchy problems with parameters to obtain sufficient conditions that ensure the same properties.
Keywords
Embedding theorems
/
Banach-valued function spaces
/
Differential-operator equations
/
B-Separability
/
Operator-valued Fourier multipliers
/
Interpolation of Banach spaces
Cite this article
Download citation ▾
Veli B. Shakhmurov.
Embedding Theorems in B-Spaces and Applications.
Chinese Annals of Mathematics, Series B, 2008, 29(1): 95-112 DOI:10.1007/s11401-005-0338-y
| [1] |
Agmon S., Nirenberg L.. Properties of solutions of ordinary differential equations in Banach spaces. Commun. Pure Appl. Math., 1963, 16: 121-239
|
| [2] |
Agranovich M. S., Vishik M. I.. Elliptic problems with a parameter and parabolic problems of general type. Uspekhi Mat. Nauk, 1964, 19(3): 53-159
|
| [3] |
Amann H.. Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications. Math. Nachr., 1997, 186: 5-56
|
| [4] |
Amann, H., Linear and Quasi-linear Equations, 1, Birkhauser, Basel, 1995.
|
| [5] |
Amann H.. Compact embedding of vector-valued Sobolev and Besov spaces. Glasnik Mathematicki, 2000, 35(55): 161-177
|
| [6] |
Aubin J. P.. Abstract boundary-value operators and their adjoint. Rend. Sem. Padova, 1970, 43: 1-33
|
| [7] |
Ashyralyev A.. On well-posedeness of the nonlocal boundary value problem for elliptic equations. Numer. Funct. Anal. Optim., 2003, 24(1–2): 1-15
|
| [8] |
Besov, O. V., Ilin, V. P. and Nikolskii, S. M., Integral representations of functions and embedding theorems, Nauka, Moscow, 1975.
|
| [9] |
Burkholder, D. L., A geometrical conditions that implies the existence certain singular integral of Banach space-valued Functions, Proc. Conf. Harmonic Analysis in Honor of Antonu Zigmund, Chicago, 1981, Wads Worth, Belmont, 1983, 270–286.
|
| [10] |
Clement Ph., de Pagter B., Sukochev F. A., Witvlet H.. Schauder decomposition and multiplier theorems. Studia Math., 2000, 138: 135-163
|
| [11] |
Dore C., Yakubov S.. Semigroup estimates and non coercive boundary value problems. Semigroup Form, 2000, 60: 93-121
|
| [12] |
Denk R., Hieber M., Prüss J.. R-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Amer. Math. Soc., 2003, 166(788): viii+114
|
| [13] |
Haller R., Heck H., Noll A.. Mikhlin’s theorem for operator-valued Fourier multipliers in n variables. Math. Nachr., 2002, 244: 110-130
|
| [14] |
Gorbachuk, V. I. and Gorbachuk, M. L., Boundary Value Problems for Differential-Operator Equations, Naukova Dumka, Kiev, 1984.
|
| [15] |
Girardy M., Weis L.. Operator-valued multiplier theorems on Besov spaces. Math. Nachr., 2003, 251: 34-51
|
| [16] |
Karakas H. I., Shakhmurov V. B., Yakubov S.. Degenerate elliptic boundary value problems. Applicable Analysis, 1996, 60: 155-174
|
| [17] |
Krein S. G.. Linear Differential Equations in Banach Space. Transi. Math. Monographs, 1971, Providence, RI: A. M. S.
|
| [18] |
Kalderon A. P.. Intermediate spaces and interpolation, the complex method. Studia Math., 1964, 24: 113-190
|
| [19] |
Komatsu H.. Fractional powers of operators. Pas. J. Math., 1966, 19: 285-346
|
| [20] |
McConnell T. R.. On Fourier multiplier transformations of Banach-valued functions. Trans. Amer. Mat. Soc., 1984, 285(2): 739-757
|
| [21] |
Lions J. L., Peetre J.. Sur une classe d’espaces d’interpolation. Inst. Hautes Etudes Sci. Publ. Math., 1964, 19: 5-68
|
| [22] |
Lions J. L., Magenes E.. Problems and limites non homogenes. J. d’Analyse Math., 1963, 11: 165-188
|
| [23] |
Lizorkin P. I.. (L p, L q)-Multiplicators of Fourier integrals. Dokl. Akad. Nauk SSSR, 1963, 152(4): 808-811
|
| [24] |
Lizorkin P. I., Shakhmurov V. B.. Embedding theorems for classes of vector-valued functions. IZ. VUZ. USSR, Math., 1989, 12: 70-78
|
| [25] |
Nazarov S. A., Plammenevskii B. A.. Elliptic Problems in Domains with Piecewise Smooth Boundaries, 1994, Walter de Gruyter: New York
|
| [26] |
Lindenstraus, J. and Tzafiri, L., Classical Banach Spaces II, Funcion Spaces, Springer-Verlag, Berlin, 1979.
|
| [27] |
Sobolev, S. L., Certain Applications of Functional Analysis to Mathematical Physics, Novosibirski, 1962.
|
| [28] |
Sobolev S. L.. Embedding theorems for abstract functions. Dok. Akad. Nauk. USSR, 1957, 115: 55-59
|
| [29] |
Sobolevkii P. E.. Coerciveness inequalities for abstract parabolic equations. Dokl. Akad. Nauk. SSSR, 1964, 57(1): 27-40
|
| [30] |
Shklyar A. Ya.. Complate Second Order Linear Differential Equations in Hilbert Spaces, 1997, Basel: Birkhauser Verlak
|
| [31] |
Shakhmurov V. B.. Theorems about of compact embedding and applications. Dokl. Akad. Nauk. SSSR, 1978, 241(6): 1285-1288
|
| [32] |
Shakhmurov V. B.. Embedding theorems in abstract function spaces and applications. Math. Sb., 1987, 134(176): 260-273
|
| [33] |
Shakhmurov V. B.. Embedding theorems and their applications to degenerate equations. Diff. Equations, 1988, 24: 672-682
|
| [34] |
Shakhmurov V. B.. Coercive boundary value problems for regular degenerate differential-operator equations. J. Math. Anal. Appl., 2004, 292(2): 605-620
|
| [35] |
Shakhmurov V. B., Dzabrailov M. C.. About compactness of embedding in B-spaces and its applications. Dokl. Akad. Nauk. Azerb., TXLVI, 1990, 6(3): 7-9
|
| [36] |
Shakhmurov V. B.. Embedding theorems in Banach-valued B-spaces and maximal B-regular differential operator equations. J. Inequal. and Appl., 2006, 2006: 1-22
|
| [37] |
Schmeisser, H.-J., Vector-valued Sobolev and Besov spaces, Sem. Analysis, 1985/86, 4–44; Teubner Texte Math., 96, 1986.
|
| [38] |
Triebel H.. Interpolation Theory, Function Spaces, Differential Operators, 1978, Amsterdam: North-Holland
|
| [39] |
Yakubov S.. Completeness of Root Functions of Regular differential operators, 1994, New York: Longman, Scientific and Technical
|
| [40] |
Yakubov S.. A nonlocal boundary value problem for elliptic differential-operator equations and applications. Integr. Equ. Oper. Theory, 1999, 35: 485-506
|
| [41] |
Yakubov S., Yakubov Ya.. Differential-Operator Equations, Ordinary and Partial Differential Equations, 2000, Boca Raton: Chapmen and Hall /CRC
|