Embedding Theorems in B-Spaces and Applications

Veli B. Shakhmurov

Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (1) : 95 -112.

PDF
Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (1) : 95 -112. DOI: 10.1007/s11401-005-0338-y
Article

Embedding Theorems in B-Spaces and Applications

Author information +
History +
PDF

Abstract

This study focuses on the anisotropic Besov-Lions type spaces B p l(Ω;E 0,E) associated with Banach spaces E 0 and E. Under certain conditions, depending on l = (l 1, l 2,⋯, l n) and α = (α1, α2, ⋯, α n), the most regular class of interpolation space E α between E 0 and E are found so that the mixed differential operators D α are bounded and compact from B p l+s(Ω;E 0,E) to B p s(Ω;E α). These results are applied to concrete vector-valued function spaces and to anisotropic differential-operator equations with parameters to obtain conditions that guarantee the uniform B separability with respect to these parameters. By these results the maximal B-regularity for parabolic Cauchy problem is obtained. These results are also applied to infinite systems of the quasi-elliptic partial differential equations and parabolic Cauchy problems with parameters to obtain sufficient conditions that ensure the same properties.

Keywords

Embedding theorems / Banach-valued function spaces / Differential-operator equations / B-Separability / Operator-valued Fourier multipliers / Interpolation of Banach spaces

Cite this article

Download citation ▾
Veli B. Shakhmurov. Embedding Theorems in B-Spaces and Applications. Chinese Annals of Mathematics, Series B, 2008, 29(1): 95-112 DOI:10.1007/s11401-005-0338-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agmon S., Nirenberg L.. Properties of solutions of ordinary differential equations in Banach spaces. Commun. Pure Appl. Math., 1963, 16: 121-239

[2]

Agranovich M. S., Vishik M. I.. Elliptic problems with a parameter and parabolic problems of general type. Uspekhi Mat. Nauk, 1964, 19(3): 53-159

[3]

Amann H.. Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications. Math. Nachr., 1997, 186: 5-56

[4]

Amann, H., Linear and Quasi-linear Equations, 1, Birkhauser, Basel, 1995.

[5]

Amann H.. Compact embedding of vector-valued Sobolev and Besov spaces. Glasnik Mathematicki, 2000, 35(55): 161-177

[6]

Aubin J. P.. Abstract boundary-value operators and their adjoint. Rend. Sem. Padova, 1970, 43: 1-33

[7]

Ashyralyev A.. On well-posedeness of the nonlocal boundary value problem for elliptic equations. Numer. Funct. Anal. Optim., 2003, 24(1–2): 1-15

[8]

Besov, O. V., Ilin, V. P. and Nikolskii, S. M., Integral representations of functions and embedding theorems, Nauka, Moscow, 1975.

[9]

Burkholder, D. L., A geometrical conditions that implies the existence certain singular integral of Banach space-valued Functions, Proc. Conf. Harmonic Analysis in Honor of Antonu Zigmund, Chicago, 1981, Wads Worth, Belmont, 1983, 270–286.

[10]

Clement Ph., de Pagter B., Sukochev F. A., Witvlet H.. Schauder decomposition and multiplier theorems. Studia Math., 2000, 138: 135-163

[11]

Dore C., Yakubov S.. Semigroup estimates and non coercive boundary value problems. Semigroup Form, 2000, 60: 93-121

[12]

Denk R., Hieber M., Prüss J.. R-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Amer. Math. Soc., 2003, 166(788): viii+114

[13]

Haller R., Heck H., Noll A.. Mikhlin’s theorem for operator-valued Fourier multipliers in n variables. Math. Nachr., 2002, 244: 110-130

[14]

Gorbachuk, V. I. and Gorbachuk, M. L., Boundary Value Problems for Differential-Operator Equations, Naukova Dumka, Kiev, 1984.

[15]

Girardy M., Weis L.. Operator-valued multiplier theorems on Besov spaces. Math. Nachr., 2003, 251: 34-51

[16]

Karakas H. I., Shakhmurov V. B., Yakubov S.. Degenerate elliptic boundary value problems. Applicable Analysis, 1996, 60: 155-174

[17]

Krein S. G.. Linear Differential Equations in Banach Space. Transi. Math. Monographs, 1971, Providence, RI: A. M. S.

[18]

Kalderon A. P.. Intermediate spaces and interpolation, the complex method. Studia Math., 1964, 24: 113-190

[19]

Komatsu H.. Fractional powers of operators. Pas. J. Math., 1966, 19: 285-346

[20]

McConnell T. R.. On Fourier multiplier transformations of Banach-valued functions. Trans. Amer. Mat. Soc., 1984, 285(2): 739-757

[21]

Lions J. L., Peetre J.. Sur une classe d’espaces d’interpolation. Inst. Hautes Etudes Sci. Publ. Math., 1964, 19: 5-68

[22]

Lions J. L., Magenes E.. Problems and limites non homogenes. J. d’Analyse Math., 1963, 11: 165-188

[23]

Lizorkin P. I.. (L p, L q)-Multiplicators of Fourier integrals. Dokl. Akad. Nauk SSSR, 1963, 152(4): 808-811

[24]

Lizorkin P. I., Shakhmurov V. B.. Embedding theorems for classes of vector-valued functions. IZ. VUZ. USSR, Math., 1989, 12: 70-78

[25]

Nazarov S. A., Plammenevskii B. A.. Elliptic Problems in Domains with Piecewise Smooth Boundaries, 1994, Walter de Gruyter: New York

[26]

Lindenstraus, J. and Tzafiri, L., Classical Banach Spaces II, Funcion Spaces, Springer-Verlag, Berlin, 1979.

[27]

Sobolev, S. L., Certain Applications of Functional Analysis to Mathematical Physics, Novosibirski, 1962.

[28]

Sobolev S. L.. Embedding theorems for abstract functions. Dok. Akad. Nauk. USSR, 1957, 115: 55-59

[29]

Sobolevkii P. E.. Coerciveness inequalities for abstract parabolic equations. Dokl. Akad. Nauk. SSSR, 1964, 57(1): 27-40

[30]

Shklyar A. Ya.. Complate Second Order Linear Differential Equations in Hilbert Spaces, 1997, Basel: Birkhauser Verlak

[31]

Shakhmurov V. B.. Theorems about of compact embedding and applications. Dokl. Akad. Nauk. SSSR, 1978, 241(6): 1285-1288

[32]

Shakhmurov V. B.. Embedding theorems in abstract function spaces and applications. Math. Sb., 1987, 134(176): 260-273

[33]

Shakhmurov V. B.. Embedding theorems and their applications to degenerate equations. Diff. Equations, 1988, 24: 672-682

[34]

Shakhmurov V. B.. Coercive boundary value problems for regular degenerate differential-operator equations. J. Math. Anal. Appl., 2004, 292(2): 605-620

[35]

Shakhmurov V. B., Dzabrailov M. C.. About compactness of embedding in B-spaces and its applications. Dokl. Akad. Nauk. Azerb., TXLVI, 1990, 6(3): 7-9

[36]

Shakhmurov V. B.. Embedding theorems in Banach-valued B-spaces and maximal B-regular differential operator equations. J. Inequal. and Appl., 2006, 2006: 1-22

[37]

Schmeisser, H.-J., Vector-valued Sobolev and Besov spaces, Sem. Analysis, 1985/86, 4–44; Teubner Texte Math., 96, 1986.

[38]

Triebel H.. Interpolation Theory, Function Spaces, Differential Operators, 1978, Amsterdam: North-Holland

[39]

Yakubov S.. Completeness of Root Functions of Regular differential operators, 1994, New York: Longman, Scientific and Technical

[40]

Yakubov S.. A nonlocal boundary value problem for elliptic differential-operator equations and applications. Integr. Equ. Oper. Theory, 1999, 35: 485-506

[41]

Yakubov S., Yakubov Ya.. Differential-Operator Equations, Ordinary and Partial Differential Equations, 2000, Boca Raton: Chapmen and Hall /CRC

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/