Attractors for a Three-Dimensional Thermo-Mechanical Model of Shape Memory Alloys*

Pierluigi Colli , Michel Frémond , Elisabetta Rocca , Ken Shirakawa

Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (6) : 683 -700.

PDF
Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (6) : 683 -700. DOI: 10.1007/s11401-005-0288-4
Original Articles

Attractors for a Three-Dimensional Thermo-Mechanical Model of Shape Memory Alloys*

Author information +
History +
PDF

Abstract

In this note, we consider a Frémond model of shape memory alloys. Let us imagine a piece of a shape memory alloy which is fixed on one part of its boundary, and assume that forcing terms, e.g., heat sources and external stress on the remaining part of its boundary, converge to some time-independent functions, in appropriate senses, as time goes to infinity. Under the above assumption, we shall discuss the asymptotic stability for the dynamical system from the viewpoint of the global attractor. More precisely, we generalize the paper [12] dealing with the one-dimensional case. First, we show the existence of the global attractor for the limiting autonomous dynamical system; then we characterize the asymptotic stability for the non-autonomous case by the limiting global attractor.

Keywords

Shape memory / Thermomechanical model / Parabolic system of partial differential equations / Global attractor / 35K55 / 35B41 / 74D10

Cite this article

Download citation ▾
Pierluigi Colli, Michel Frémond, Elisabetta Rocca, Ken Shirakawa. Attractors for a Three-Dimensional Thermo-Mechanical Model of Shape Memory Alloys*. Chinese Annals of Mathematics, Series B, 2006, 27(6): 683-700 DOI:10.1007/s11401-005-0288-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bonetti Nonlinear Anal., 2001, 46: 535

[2]

Bonetti Quart. Appl. Math., 2003, 61: 759

[3]

Bonetti Quart. Appl. Math., 2004, 62: 53

[4]

Brezis, H., Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North Holland Math. Studies, Vol. 5, North-Holland, Amsterdam, 1973.

[5]

Brézis Comm. Pure Appl. Math., 1970, 23: 123

[6]

Chepyzhov J. Math. Pures Appl., 1994, 73: 279

[7]

Chepyzhov, V. V. and Vishik, M. I., Attractors for equations of mathematical physics, Amer. Math. Soc. Colloq. Publ., Vol. 49, A. M. S., Providence, RI, 2002.

[8]

Colli, P., An evolution problem related to shape memory alloys, Mathematical Models for Phase Change Problems, J.-F. Rodrigues (ed.), Internat. Ser. Numer. Math., Vol. 88, Birkhäuser, Basel, 1989, 75–88.

[9]

Colli Nonlinear Anal., 1995, 24: 1565

[10]

Colli Quart. Appl. Math., 1990, 48: 31

[11]

Colli Contin. Mech. Thermodyn., 2000, 12: 423

[12]

Colli Asymptot. Anal., 2004, 40: 106

[13]

Colli Contin. Mech. Thermodyn., 1993, 5: 255

[14]

Duvaut, G. and Lions, J.-L., Inequalities in Mechanics and Physics, Springer-Verlag, Berlin-New York, 1976.

[15]

Frémond, M., Shape memory alloys. A thermomechanical model, Free Boundary Problems: Theory and Applications, K. H. Hoffmann and J. Sprekels (eds.), Pitman Res. Notes Math. Ser., Vol. 185, Longman, London, 1990, 295–306.

[16]

Frémond, M., Non-smooth Thermomechanics, Springer-Verlag, Berlin, 2002.

[17]

Frémond, M. and Miyazaki, S., Shape Memory Alloys, CISM Courses and Lectures, Vol. 351, Springer, Vienna, 1996.

[18]

Hale, J. K., Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, Vol. 25, A. M. S., Providence, RI, 1988.

[19]

Ito, A., Yamazaki, N. and Kenmochi, N., Attractors of nonlinear evolution systems generated by timedependent subdifferentials in Hilbert spaces, Dynamical Systems and Differential Equations, W. Chen and S. Hu (eds.), Vol. I, Discrete Contin. Dynam. Systems, Added Volume I, 1998, 327–349.

[20]

Kenmochi Bull. Fac. Ed., Chiba Univ., 1981, 30: 1

[21]

Kenmochi Nonlinear Anal., 1994, 22: 1163

[22]

Nečas, J., Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967.

[23]

Shirakawa, K., Ito, A., Yamazaki, N. and Kenmochi, N., Asymptotic stability for evolution equationsgoverned by subdifferentials, Recent Developments in Domain Decomposition Methods and Flow Problems, H. Fujita, H. Koshigoe, M. Mori, et al (eds.), GAKUTO Intern. Ser. Math. Sci. Appl., Vol. 11, Gakkōtosho, Tokyo, 1998, 287–310.

[24]

Stefanelli Math. Comp., 2002, 71: 1431

[25]

Temam, R., Problèmes mathématiques en plasticité, Methodes Math. Inform., Vol. 12, Gauthier-Villars, Montrouge, 1983.

[26]

Temam, R., Infinite-dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, Vol. 68, Springer-Verlag, New York, 1988.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/