Attractors for a Three-Dimensional Thermo-Mechanical Model of Shape Memory Alloys*
Pierluigi Colli , Michel Frémond , Elisabetta Rocca , Ken Shirakawa
Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (6) : 683 -700.
Attractors for a Three-Dimensional Thermo-Mechanical Model of Shape Memory Alloys*
In this note, we consider a Frémond model of shape memory alloys. Let us imagine a piece of a shape memory alloy which is fixed on one part of its boundary, and assume that forcing terms, e.g., heat sources and external stress on the remaining part of its boundary, converge to some time-independent functions, in appropriate senses, as time goes to infinity. Under the above assumption, we shall discuss the asymptotic stability for the dynamical system from the viewpoint of the global attractor. More precisely, we generalize the paper [12] dealing with the one-dimensional case. First, we show the existence of the global attractor for the limiting autonomous dynamical system; then we characterize the asymptotic stability for the non-autonomous case by the limiting global attractor.
Shape memory / Thermomechanical model / Parabolic system of partial differential equations / Global attractor / 35K55 / 35B41 / 74D10
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
Brezis, H., Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North Holland Math. Studies, Vol. 5, North-Holland, Amsterdam, 1973. |
| [5] |
|
| [6] |
|
| [7] |
Chepyzhov, V. V. and Vishik, M. I., Attractors for equations of mathematical physics, Amer. Math. Soc. Colloq. Publ., Vol. 49, A. M. S., Providence, RI, 2002. |
| [8] |
Colli, P., An evolution problem related to shape memory alloys, Mathematical Models for Phase Change Problems, J.-F. Rodrigues (ed.), Internat. Ser. Numer. Math., Vol. 88, Birkhäuser, Basel, 1989, 75–88. |
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
Duvaut, G. and Lions, J.-L., Inequalities in Mechanics and Physics, Springer-Verlag, Berlin-New York, 1976. |
| [15] |
Frémond, M., Shape memory alloys. A thermomechanical model, Free Boundary Problems: Theory and Applications, K. H. Hoffmann and J. Sprekels (eds.), Pitman Res. Notes Math. Ser., Vol. 185, Longman, London, 1990, 295–306. |
| [16] |
Frémond, M., Non-smooth Thermomechanics, Springer-Verlag, Berlin, 2002. |
| [17] |
Frémond, M. and Miyazaki, S., Shape Memory Alloys, CISM Courses and Lectures, Vol. 351, Springer, Vienna, 1996. |
| [18] |
Hale, J. K., Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, Vol. 25, A. M. S., Providence, RI, 1988. |
| [19] |
Ito, A., Yamazaki, N. and Kenmochi, N., Attractors of nonlinear evolution systems generated by timedependent subdifferentials in Hilbert spaces, Dynamical Systems and Differential Equations, W. Chen and S. Hu (eds.), Vol. I, Discrete Contin. Dynam. Systems, Added Volume I, 1998, 327–349. |
| [20] |
|
| [21] |
|
| [22] |
Nečas, J., Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967. |
| [23] |
Shirakawa, K., Ito, A., Yamazaki, N. and Kenmochi, N., Asymptotic stability for evolution equationsgoverned by subdifferentials, Recent Developments in Domain Decomposition Methods and Flow Problems, H. Fujita, H. Koshigoe, M. Mori, et al (eds.), GAKUTO Intern. Ser. Math. Sci. Appl., Vol. 11, Gakkōtosho, Tokyo, 1998, 287–310. |
| [24] |
|
| [25] |
Temam, R., Problèmes mathématiques en plasticité, Methodes Math. Inform., Vol. 12, Gauthier-Villars, Montrouge, 1983. |
| [26] |
Temam, R., Infinite-dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, Vol. 68, Springer-Verlag, New York, 1988. |
/
| 〈 |
|
〉 |