The Double Ringel-Hall Algebras of Valued Quivers*

Yanxin Wang , Jie Xiao

Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (6) : 701 -722.

PDF
Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (6) : 701 -722. DOI: 10.1007/s11401-005-0287-5
Original Articles

The Double Ringel-Hall Algebras of Valued Quivers*

Author information +
History +
PDF

Abstract

This paper is devoted to the study of the structure of the double Ringel-Hall algebra ${\user1{\mathcal{D}}}{\left( \Lambda \right)}$ for an infinite dimensional hereditary algebra Λ, which is given by a valued quiver Γ over a finite field, and also to the study of the relations of ${\user1{\mathcal{D}}}{\left( \Lambda \right)}$-modules with representations of valued quiver Γ.

Keywords

Ringel-Hall algebras / Generalized Kac-Moody algebras / Drinfeld double / 16G10 / 17B37 / 17B67

Cite this article

Download citation ▾
Yanxin Wang, Jie Xiao. The Double Ringel-Hall Algebras of Valued Quivers*. Chinese Annals of Mathematics, Series B, 2006, 27(6): 701-722 DOI:10.1007/s11401-005-0287-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Borcherds J. Algebra, 1988, 115: 501

[2]

Curtis, C. W. and Reiner, I., Methods of Representaton Theory, Vol. 1, New York, 1981.

[3]

Deng Trans. Amer. Math. Soc., 2006, 358: 3591

[4]

Deng J. Algebra, 2002, 251: 110

[5]

Deng Math. Z., 2003, 245: 183

[6]

Dlab, V. and Ringel, C. M., Indecomposable Representations of Graphs and Algebras, Mem. Amer. Math. Soc., 173, 1976.

[7]

Green Invent. Math., 1995, 120: 361

[8]

Guo J. Algebra, 1997, 198: 339

[9]

Jantzen, J. C., Lectures on quantum groups, Graduate Studies in Mathematics, Vol. 6, Amer. Math. Soc., Providence, 1995.

[10]

Jeong Proc. London Math. Soc., 2005, 90: 395

[11]

Kac, V., Infinite dimensional Lie algebras, 3rd edition, Cambridge Univ. Press, Cambridge, UK, 1990.

[12]

Kang J. Algebra, 1995, 175: 1041

[13]

Kang Hiroshima. Math. J., 1997, 27: 347

[14]

Obul Chin. Ann. Math., 2002, 23B: 349

[15]

Ringel, C. M., Green's theorem on Hall algebras, Representation of Algebras and Related Topics, CMS Conference Proceedings, Vol. 19, Amer. Math. Soc., 1996, 185–245.

[16]

Ringel J. Algebra, 1976, 41: 51

[17]

Sevenhant J. Pure Appl. Algebra, 2001, 160: 319

[18]

Wang, Y. X., Counting representations of valued quiver over finite field, Algebra Colloquium, to appear.

[19]

Xiao J. Algebra, 1997, 190: 100

[20]

Xiao Chin. Ann. Math., 1991, 12A: 144

AI Summary AI Mindmap
PDF

172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/