Bifurcation of Homoclinic Orbits with Saddle-Center Equilibrium*

Xingbo Liu , Xianlong Fu , Deming Zhu

Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (1) : 81 -92.

PDF
Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (1) : 81 -92. DOI: 10.1007/s11401-005-0226-5
Original Articles

Bifurcation of Homoclinic Orbits with Saddle-Center Equilibrium*

Author information +
History +
PDF

Abstract

In this paper, the authors develop new global perturbation techniques for detecting the persistence of transversal homoclinic orbits in a more general nondegenerated system with action-angle variable. The unperturbed system is assumed to have saddlecenter type equilibrium whose stable and unstable manifolds intersect in one dimensional manifold, and does not have to be completely integrable or near-integrable. By constructing local coordinate systems near the unperturbed homoclinic orbit, the conditions of existence of transversal homoclinic orbit are obtained, and the existence of periodic orbits bifurcated from homoclinic orbit is also considered.

Keywords

Local coordinate system / Homoclinic orbit / Bifurcation / 34C23 / 34C37 / 37C29

Cite this article

Download citation ▾
Xingbo Liu, Xianlong Fu, Deming Zhu. Bifurcation of Homoclinic Orbits with Saddle-Center Equilibrium*. Chinese Annals of Mathematics, Series B, 2007, 28(1): 81-92 DOI:10.1007/s11401-005-0226-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wiggins, S., Global Bifurcation and chaos, Springer-Verlag, New York, 1988.

[2]

Wiggins SIAM J. Math. Anal., 1987, 18: 612

[3]

Yagasaki Nonlinearity, 1999, 12: 799

[4]

Huang J. Shanghai Univ., 1998, 2: 259

[5]

Feckan J. Differential Equations, 2000, 41: 1

[6]

Kovacic SIAM J. Math. Anal., 1995, 26: 1611

[7]

Zhu Acta Math. Sinica, New Ser., 1998, 14: 341

[8]

Zhu Sci. China Ser. A, 1998, 41: 837

[9]

Zhu Chin. Ann. Math, 2002, 23A: 438

[10]

Deng SIAM J. Math. Anal., 1990, 3: 693

AI Summary AI Mindmap
PDF

95

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/