Talagrand’s T 2-Transportation Inequality and Log-Sobolev Inequality for Dissipative SPDEs and Applications to Reaction-Diffusion Equations*

Liming Wu , Zhengliang Zhang

Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (3) : 243 -262.

PDF
Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (3) : 243 -262. DOI: 10.1007/s11401-005-0176-y
Original Articles

Talagrand’s T 2-Transportation Inequality and Log-Sobolev Inequality for Dissipative SPDEs and Applications to Reaction-Diffusion Equations*

Author information +
History +
PDF

Abstract

We establish Talagrand’s T 2-transportation inequalities for infinite dimensional dissipative diffusions with sharp constants, through Galerkin type’s approximations and the known results in the finite dimensional case. Furthermore in the additive noise case we prove also logarithmic Sobolev inequalities with sharp constants. Applications to Reaction-Diffusion equations are provided.

Keywords

Stochastic partial differential equations (SPDEs) / Logarithmic Sobolev inequality / Talagrand’s transportation inequality / Poincaré inequality / 60H15 / 37L40 / 35K57 / 35R60

Cite this article

Download citation ▾
Liming Wu, Zhengliang Zhang. Talagrand’s T 2-Transportation Inequality and Log-Sobolev Inequality for Dissipative SPDEs and Applications to Reaction-Diffusion Equations*. Chinese Annals of Mathematics, Series B, 2006, 27(3): 243-262 DOI:10.1007/s11401-005-0176-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bakry, D. and Emery, M., Diffusions hypercontractives, Séminaire de Probabilités, Lect. Notes Math., 1123, Springer, 1985, 259-206.

[2]

Bobkov J. Math. Pure Appl., 2001, 80: 669

[3]

Bobkov J. Funct. Anal., 1999, 163: 1

[4]

Djellout Ann. Probab., 2004, 32B: 2702

[5]

Da Prato Probab. Th. Rel. Fields, 2002, 123: 355

[6]

Da Prato, G. and Zabczyk, J., Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and Its Applictions, Combridge University Press, 1992.

[7]

Da Prato, G. and Zabczyk, J., Ergodicity for Infinite Dimensional Systems, London Mathematical Society, Lecture Note Series 229, Combridge University Press, 1996.

[8]

Fang, S. and Shao, J., Transportation cost inequalities on path and loop groups, J. Funct. Anal., to appear.

[9]

Feyel CRAS Serie I, 2002, 334: 1025

[10]

Feyel Probab. Theor. Rel. Fields, 2004, 128: 347

[11]

Gourcy, M. and Wu, L., Logarithmic Sobolev inequality for diffusions w.r.t. the L 2-metric, preprint, 2004.

[12]

Gross Amer. J. Math., 1975, 97: 1061

[13]

Ledoux, M., The Concentration of Measure Phenomenon, Mathematical Surveys and Monographs, Vol. 89, Amer. Math. Soc., 2001.

[14]

Marton Geom. Funct. Anal., 1997, 6: 556

[15]

Marton Ann. Probab., 1996, 24: 857

[16]

Otto J. Funct. Anal., 2000, 173: 361

[17]

Pazy, A., Semigroups of Linear Operayors and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.

[18]

Talagrand Geom. Funct. Anal., 1996, 6: 587

[19]

Villani, C., Topics in optimal transportation, Grad. Stud. Math. Vol. 58, Amer. Math. Soc., 2003.

[20]

Wang Illinois J. Math., 2002, 46: 1197

[21]

Wang J. Funct. Anal., 2004, 206: 167

[22]

Wu Acta Math. Appl. Sinica, English Series, 2004, 20: 357

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/