Distribution of Primitive λ-Roots of Composite Moduli II*

Zhiyong Zheng , Todd Cochrane

Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (5) : 549 -552.

PDF
Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (5) : 549 -552. DOI: 10.1007/s11401-005-0105-0
Original Articles

Distribution of Primitive λ-Roots of Composite Moduli II*

Author information +
History +
PDF

Abstract

We improve estimates for the distribution of primitive λ-roots of a composite modulus q yielding an asymptotic formula for the number of primitive λ-roots in any interval I of length ∣I∣ ≫ q 1/2+∈. Similar results are obtained for the distribution of ordered pairs (x, x −1) with x a primitive λ-root, and for the number of primitive λ-roots satisfying inequalities such as |xx −1| ≤ B.

Keywords

λ-Roots / Primitive roots / 11L03 / 11L07

Cite this article

Download citation ▾
Zhiyong Zheng, Todd Cochrane. Distribution of Primitive λ-Roots of Composite Moduli II*. Chinese Annals of Mathematics, Series B, 2006, 27(5): 549-552 DOI:10.1007/s11401-005-0105-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Beck Period. Math. Hungar., 2002, 44: 147

[2]

Carmichael, R. D., The Theory of Numbers, Wiley, New York, 1914.

[3]

Estermann Mathematika, 1961, 8: 83

[4]

Li Acta Arith., 1998, 86: 113

[5]

Müller Acta Arith., 2004, 115: 217

[6]

Zheng, Z., Xia, L. and Cochrane, T., Distribution of λ-roots of composite moduli, Manuscripta Math., 2004, to appear.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/