Bifurcations of Invariant Tori and Subharmonic Solutions of Singularly Perturbed System*

Zhiyong Ye , Maoan Han

Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (2) : 135 -148.

PDF
Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (2) : 135 -148. DOI: 10.1007/s11401-005-0081-4
Original Articles

Bifurcations of Invariant Tori and Subharmonic Solutions of Singularly Perturbed System*

Author information +
History +
PDF

Abstract

This paper deals with bifurcations of subharmonic solutions and invariant tori generated from limit cycles in the fast dynamics for a nonautonomous singularly perturbed system. Based on Poincaré map, a series of blow-up transformations and the theory of integral manifold, the conditions for the existence of invariant tori are obtained, and the saddle-node bifurcations of subharmonic solutions are studied.

Keywords

Singular perturbation / Subharmonic solution / Saddle-Node / Invariant torus / 34A26 / 34E15 / 34C25 / 34C29 / 34C45

Cite this article

Download citation ▾
Zhiyong Ye, Maoan Han. Bifurcations of Invariant Tori and Subharmonic Solutions of Singularly Perturbed System*. Chinese Annals of Mathematics, Series B, 2007, 28(2): 135-148 DOI:10.1007/s11401-005-0081-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lorenz J. Atmospheric Sci., 1963, 20: 130

[2]

Stiefenhofer SIAM J. Math. Anal., 2000, 32: 820

[3]

Robbins SIAM J. Appl. Math., 1979, 36: 457

[4]

Wiggins SIAM J. Math. Anal., 1987, 18: 592

[5]

Marzec SIAM J. Appl. Math., 1980, 38: 403

[6]

Robinson SIAM J. Appl. Math., 1983, 14: 847

[7]

Stiefenhofer Z. Angew. Math. Phys., 1998, 49: 602

[8]

Chow, S. N. and Hale, J. K., Methods of Bifurcation Theory, Springer-Verlag, New York-Berlin, 1982

[9]

Guckenheimer, J. and Holmes, P., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983

[10]

Hale, J. K., Ordinary Differential Equations, Wiley-Interscience, New York, 1969

[11]

Han Sci. China Ser. A, 1994, 37: 1325

[12]

Han Sci. China Ser. A, 1996, 29: 509

[13]

Han Sci. China Ser. A, 2005, 35: 425

[14]

Han Nonlinear Anal. Ser. A, Theory Methods, 1999, 36: 319

[15]

Han Chin. Ann. Math., 2004, 25B: 233

[16]

Liu Chin. Ann. Math., 2005, 26B: 253

[17]

Luo, D., Wang, X., Zhu, D. and Han, M., Bifurcation Theory and Methods of Dynamical Systems, World Scientific, Singapore, 1997

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/