Jensen’s Inequality for Backward Stochastic Differential Equations*

Long Jiang

Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (5) : 553 -564.

PDF
Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (5) : 553 -564. DOI: 10.1007/s11401-005-0077-0
Original Articles

Jensen’s Inequality for Backward Stochastic Differential Equations*

Author information +
History +
PDF

Abstract

Under the Lipschitz assumption and square integrable assumption on g, the author proves that Jensen’s inequality holds for backward stochastic differential equations with generator g if and only if g is independent of y, g(t, 0) ≡ 0 and g is super homogeneous with respect to z. This result generalizes the known results on Jensen’s inequality for g- expectation in [4, 7–9].

Keywords

Backward stochastic differential equation / g-Expectation / Jensen’sinequality for g-expectation / Jensen’s inequality for BSDEs / 60H10

Cite this article

Download citation ▾
Long Jiang. Jensen’s Inequality for Backward Stochastic Differential Equations*. Chinese Annals of Mathematics, Series B, 2006, 27(5): 553-564 DOI:10.1007/s11401-005-0077-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Peng, S., Backward stochastic differential equations and related g-expectation, Backward Stochastic Dif- ferential Equations, N. El. Karoui and L. Mazliak (eds.), Pitman Research Notes in Math. Series, No. 364, Longman Harlow, 1997, 141–159.

[2]

Chen Econometrica, 2002, 70: 1403

[3]

Rosazza, G. E., Some examples of risk measure via g-expectations, Working Paper, Università di Milano Bicocca, Italy, 2004.

[4]

Briand Electron. Comm. Probab., 2000, 5: 101

[5]

Coquet C. R. Acad. Sci. Paris, Série I, 2001, 333: 577

[6]

Coquet Probab. Theory and Related Fields, 2002, 123: 1

[7]

Chen C. R. Acad. Sci. Paris, Série I, 2003, 337: 725

[8]

Chen C. R. Acad. Sci. Paris, Série I, 2003, 337: 797

[9]

Jiang Chin. Ann. Math., 2004, 25B: 401

[10]

Jiang Acta Math. Sinica, English Series, 2004, 20: 769

[11]

Pardoux Systems Control Let., 1990, 14: 55

[12]

Jiang, L., Nonlinear Expectation—g-Expectation Theory and Its Applications in Finance, Doctoral Dis- sertation, Shandong University, China, 2005.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/