Quasi-convex Functions in Carnot Groups*

Mingbao Sun , Xiaoping Yang

Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (2) : 235 -242.

PDF
Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (2) : 235 -242. DOI: 10.1007/s11401-005-0052-9
Original Articles

Quasi-convex Functions in Carnot Groups*

Author information +
History +
PDF

Abstract

In this paper, the authors introduce the concept of h-quasiconvex functions on Carnot groups G. It is shown that the notions of h-quasiconvex functions and h-convex sets are equivalent and the L estimates of first derivatives of h-quasiconvex functions are given. For a Carnot group G of step two, it is proved that h-quasiconvex functions are locally bounded from above. Furthermore, the authors obtain that h-convex functions are locally Lipschitz continuous and that an h-convex function is twice differentiable almost everywhere.

Keywords

h-Quasiconvex function / Carnot group / Lipschitz continuity / 43A80 / 26B25

Cite this article

Download citation ▾
Mingbao Sun, Xiaoping Yang. Quasi-convex Functions in Carnot Groups*. Chinese Annals of Mathematics, Series B, 2007, 28(2): 235-242 DOI:10.1007/s11401-005-0052-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arrow Economitrica, 1961, 29: 779

[2]

Balogh Ann. Scuola Norm. Sup. Pisa Cl. Sci., 2003, 2: 847

[3]

Bellaïche, A. and Risler, J.-J., Sub-Riemannian Geometry, Progress in Mathematics, Vol. 144, Birkhauser, 1996

[4]

Cabre, X. and Caffarelli, L., Fully nonlinear elliptic equations, AMS Colloquium Publications, 43, AMS, Providence, RI, 1995

[5]

Crandall Bull. Amer. Math. Soc., 1992, 27: 1

[6]

Danielli Comm. Analysis and Geometry, 2003, 11: 263

[7]

Danielli Comm. Analysis and Geometry, 2004, 12: 853

[8]

Garofalo J. Anal. Math., 1998, 74: 67

[9]

Fenchel, W., Convex Cones, Sets and Functions, Princeton University, Princeton, New Jersey, 1951

[10]

Ferland Linear Alg. Appl., 1981, 38: 51

[11]

Folland Ark. Math., 1975, 13: 161

[12]

Folland, G. B. and Stein, E. M., Hardy Space on Homogeneous Groups, Princeton University Press, Princeton, New Jersey, 1982

[13]

Greenberg Operation Research, 1971, 19: 1553

[14]

Lu Calc. Var. Partial Differential Equations, 2003, 19: 1

[15]

Magnani Math. Annalen., 2006, 334: 199

[16]

Nikaido Pacific J. Math., 1954, 4: 65

[17]

Pansu Ann. Math., 1989, 129: 1

[18]

Stein, E. M., Harmonic Analysis: Real VaribleMethods, Orthogonality and Oscillatory Integrals, Princeton University Press, Princeton, 1993

[19]

Sun Acta Math. Appl. Sin., 2004, 20: 123

[20]

Sun Acta Math. Appl. Sin., 2005, 21: 571

[21]

Sun Contem- porary Mathematics, 2006, 8: 1

[22]

Varadarajan, V. S., Lie Groups, Lie Algebras, and Their Representions, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1974

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/