Continuity of Weak Solutions for Quasilinear Parabolic Equations with Strong Degeneracy*

Hongjun Yuan

Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (4) : 475 -498.

PDF
Chinese Annals of Mathematics, Series B ›› 2007, Vol. 28 ›› Issue (4) : 475 -498. DOI: 10.1007/s11401-005-0039-6
Original Articles

Continuity of Weak Solutions for Quasilinear Parabolic Equations with Strong Degeneracy*

Author information +
History +
PDF

Abstract

The aim of this paper is to study the continuity of weak solutions for quasilinear degenerate parabolic equations of the form

u t − Δ(u) = 0,

where C 1(ℝ1) is a strictly monotone increasing function. Clearly, the above equation has strong degeneracy, i.e., the set of zero points of ∅'( · ) is permitted to have zero measure. This is an answer to an open problem in [13, p. 288].

Keywords

Continuity of weak solutions / Quasilinear degenerate parabolic equation / 35L80 / 35L60 / 35L15 / 35B40 / 35F25

Cite this article

Download citation ▾
Hongjun Yuan. Continuity of Weak Solutions for Quasilinear Parabolic Equations with Strong Degeneracy*. Chinese Annals of Mathematics, Series B, 2007, 28(4): 475-498 DOI:10.1007/s11401-005-0039-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Peletier, L. A., The porous medium equation, Application of Analysis in the Physical Sciences, Pitman, London, 1981, 229–241

[2]

Aronson SIAM J. Appl. Math., 1969, 17: 461

[3]

Aronson SIAM J. Appl. Math., 1970, 19: 299

[4]

Aronson Arch. Rat. Mech. Anal., 1970, 37: 1

[5]

Aronson Arch. Rat. Mech. Anal., 1987, 99: 329

[6]

Caffarelli Indiana Univ. Math. J., 1980, 29: 361

[7]

Aronson C. R. Math. Acad. Sc. Paris, 1979, 288: 103

[8]

Caffarelli Indiana Univ. Math. J., 1987, 36: 373

[9]

Caffarelli Comm. Pure Appl. Math., 1990, 43: 885

[10]

Chen Chin. Ann. Math., 1984, 5B: 661

[11]

DiBenedetto, E., Degenerate Parabolic Equations, Springer-Verlag, New York, 1993

[12]

DiBenedetto J. Reine Angew. Math., 1985, 357: 1

[13]

Wu, Z. Q., Zhao, J. N., Yin, J. X. and Li, H. L., Nonlinear Diffusion Equations, World Scientific Publishing, Singapore, 2001

[14]

Ladyzhenskaya, O. A., Solonnikov, N. A. and Uraltzeva, N. N., Linear and quasilinear equations of parabolic type, Transl. Math. Monogr., Vol. 23, A.M.S., Providence, RI, 1968

[15]

Yuan Nonlinear Analysis, 1994, 23: 721

[16]

DeGiorgi Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 1957, 3: 25

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/