A Note on “Modules, Comodules, and Cotensor Products over Frobenius Algebras”*

Xiaowu Chen , Hualin Huang , Yanhua Wang

Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (4) : 419 -424.

PDF
Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (4) : 419 -424. DOI: 10.1007/s11401-005-0025-z
Original Articles

A Note on “Modules, Comodules, and Cotensor Products over Frobenius Algebras”*

Author information +
History +
PDF

Abstract

This is a note on Abrams' paper "Modules, Comodules, and Cotensor Products over Frobenius Algebras, Journal of Algebras" (1999). With the application of Frobenius coordinates developed recently by Kadison, one has a direct proof of Abrams' characterization for Frobenius algebras in terms of comultiplication (see L. Kadison (1999)). For any Frobenius algebra, by using the explicit comultiplication, the explicit correspondence between the category of modules and the category of comodules is obtained. Moreover, with this we give very simplified proofs and improve Abrams' results on the Hom functor description of cotensor functor.

Keywords

Frobenius coordinates / Cotensor / Hochschild cohomology / 17A60 / 18G15

Cite this article

Download citation ▾
Xiaowu Chen, Hualin Huang, Yanhua Wang. A Note on “Modules, Comodules, and Cotensor Products over Frobenius Algebras”*. Chinese Annals of Mathematics, Series B, 2006, 27(4): 419-424 DOI:10.1007/s11401-005-0025-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abrams J. Knot Theory and Its Ramifications, 1996, 5: 569

[2]

Abrams J. of Algebras, 1999, 291: 201

[3]

Abrams Trans. Amer. Math. Soc., 2002, 354: 2173

[4]

Curtis, C. and Reiner, I., Representation Theory of Finite Groups and Associative Algebras, Interscience Publishers, New York, 1962.

[5]

Kadison, L., Frobenius Extensions, University Lecture Series, Vol. 14, A. M. S., Providence, RI, 1999.

[6]

Kadison Beiträge Algebra Geom., 2001, 42: 359

[7]

Kadison J. Pure Appl. Algebra, 2002, 176: 127

[8]

Kock, J., Frobenius Algebras and 2D Topological Quantum Field Theories, Available at http://math1. unice.fr/kock/TQFT.html.

[9]

Montgomery, S., Hopf Algebras and Their Actions on Rings, CBMS Lectures, Vol. 82, A. M. S., Providence, RI, 1993.

[10]

Wang Tsukuba J. Math., 2004, 28: 215

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/