Beckner Inequality on Finite- and Infinite-Dimensional Manifolds*

Pingji Deng , Fengyu Wang

Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (5) : 581 -594.

PDF
Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (5) : 581 -594. DOI: 10.1007/s11401-004-0317-8
Original Articles

Beckner Inequality on Finite- and Infinite-Dimensional Manifolds*

Author information +
History +
PDF

Abstract

By using the dimension-free Harnack inequality, the coupling method, and Bakry-Emery’s argument, some explicit lower bounds are presented for the constant of the Beckner type inequality on compact manifolds. As applications, the Beckner inequality and the transportation cost inequality are established for a class of continuous spin systems. In particular, some results in [1, 2] are generalized.

Keywords

Beckner inequality / Continuous spin systems / Transportation cost inequality / 47D07 / 60H10

Cite this article

Download citation ▾
Pingji Deng, Fengyu Wang. Beckner Inequality on Finite- and Infinite-Dimensional Manifolds*. Chinese Annals of Mathematics, Series B, 2006, 27(5): 581-594 DOI:10.1007/s11401-004-0317-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang Ann. Probab., 1999, 27: 653

[2]

Deuschel J. Funct. Anal., 1990, 92: 30

[3]

Beckner Proc. Amer. Math. Soc., 1989, 105: 397

[4]

Ledoux Ann. Fac. Sci. Toulouse, 2000, IX: 305

[5]

Rothaus J. Funct. Anal., 1981, 42: 102

[6]

Simon Proc. Amer. Math. Soc., 1976, 55: 376

[7]

Lata la, R. and Oleszkiewicz, K., Between Sobolev and Poincaré, Lecture Notes in Math., 1745, Springer, Berlin, 2000, 147–168.

[8]

Wang J. Funct. Anal., 2004, 206: 167

[9]

Wang Probab. Theory Related Fields, 1997, 109: 417

[10]

Bakry, D., L’hypercontractivité et son utilisation en théorie des semigroupes, Ecole d’Eté de Probabilités de St-Flour, Lecture Notes in Math., 1581, Springer, Berlin, 1994, 1–114.

[11]

Fontenas Bull. Sci. Math., 1997, 121: 71

[12]

Rothaus J. Funct. Anal., 1981, 42: 110

[13]

Chen Sci. Sin. Ser. A, 1997, 40: 384

[14]

Chen, M. F., From Markov Chains to Non-Equilibrium Particle Systems, World Scientific, Singapore, 1992.

[15]

Wang, F. Y., Functional Inequality, Markov Processes, and Spectral Theory, Science Press, Beijing, 2004.

[16]

Stroock Comm. Math. Phys., 1992, 144: 303

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/