The Convergence of $\widetilde{\gamma }_{s} {\left( {b_{0} h_{n} - h_{1} b_{{n - 1}} } \right)}$*

Xiugui Liu , Xiangjun Wang

Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (3) : 329 -340.

PDF
Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (3) : 329 -340. DOI: 10.1007/s11401-004-0270-6
Original Articles

The Convergence of $\widetilde{\gamma }_{s} {\left( {b_{0} h_{n} - h_{1} b_{{n - 1}} } \right)}$*

Author information +
History +
PDF

Abstract

This paper computes the Thom map on γ2 and proves that it is represented by 2b 2,0 h 1,2 in the ASS. The authors also compute the higher May differential of b 2,0, from which it is proved that $\widetilde{\gamma }_{s} {\left( {b_{0} h_{n} - h_{1} b_{{n - 1}} } \right)}$ for 2 ≤ s < p - 1 are permanent cycles in the ASS.

Keywords

Stable homotopy / Adams spectral sequence / May spectral sequence / 5Q52 / 55Q40

Cite this article

Download citation ▾
Xiugui Liu, Xiangjun Wang. The Convergence of $\widetilde{\gamma }_{s} {\left( {b_{0} h_{n} - h_{1} b_{{n - 1}} } \right)}$*. Chinese Annals of Mathematics, Series B, 2006, 27(3): 329-340 DOI:10.1007/s11401-004-0270-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams, J. F., Stable Homotopy and Generalised Homology, University of Chicago Press, Chicago, 1974.

[2]

Aikawa Math. Scand., 1980, 47: 91

[3]

Cohen, R., Odd Primary Infinite Families in Stable Homotopy Theory, Memoirs of A. M. S., 42, 1981.

[4]

Lin Hiroshima Math. J., 2001, 31: 477

[5]

Liulevicius, A., The Factorization of Cyclic Reduced Powers by Secondary Cohomology Operations, Memoirs of A. M. S., 42, 1962.

[6]

May J. Algebra, 1966, 3: 123

[7]

Ravenel, D. C., Complex Cobordism and Stable Homotopy Groups of Spheres, Academic Press, New York, 1986.

[8]

Shimomura Topology, 1995, 34: 261

[9]

Toda Topology, 1971, 10: 55

[10]

Wang Science in China, 1998, 41: 622

[11]

Zhou, X., Higher Cohomology Operations That Detect Homotopy Theory, Lecture Notes in Math., 1370, 416-436.

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/