A Hybrid of Theorems of Goldbach and Piatetski-Shapiro*

Xianmeng Meng , Mingqiang Wang

Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (3) : 341 -352.

PDF
Chinese Annals of Mathematics, Series B ›› 2006, Vol. 27 ›› Issue (3) : 341 -352. DOI: 10.1007/s11401-004-0269-z
Original Articles

A Hybrid of Theorems of Goldbach and Piatetski-Shapiro*

Author information +
History +
PDF

Abstract

It is proved that for almost all sufficiently large even integers n, the prime variable equation n = p 1 + p 2, p 1P γ is solvable, with 13=15 < γ ≤ 1, where P γ = {p ∣ $p = {\left[ {m^{{\frac{1}{\gamma }}} } \right]}$; for integer m and prime p} is the set of the Piatetski-Shapiro primes.

Keywords

Circle method / Sieve method / Goldbach problem / 1P32 / 11P55

Cite this article

Download citation ▾
Xianmeng Meng, Mingqiang Wang. A Hybrid of Theorems of Goldbach and Piatetski-Shapiro*. Chinese Annals of Mathematics, Series B, 2006, 27(3): 341-352 DOI:10.1007/s11401-004-0269-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li Acta Arith., 2003, 107: 307

[2]

Piatetski-Shapiro Mat. Sb., 1953, 33: 559

[3]

Rivat Canad. J. Math., 2001, 53: 414

[4]

Rivat Glasg. Math. J., 2001, 43: 237

[5]

Jia Science in China, Ser. A, 1991, 34: 695

[6]

Jia Acta Arith., 1995, 73: 1

[7]

Balog Pacific J. Math., 1992, 156: 45

[8]

Davenport, H., Multiplicative Number Theory, 2nd edition, Springer, New York, 1980.

[9]

Pan, C. D. and Pan, C. B., Goldbach Conjecture, Science Press, Beijing, China, 1992.

[10]

Iwaniec Acta Arith., 1980, 37: 307

AI Summary AI Mindmap
PDF

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/