The Heat Flow of Harmonic Maps from Noncompact Manifolds

Jiayu Li , Silei Wang

Chinese Annals of Mathematics, Series B ›› 2000, Vol. 21 ›› Issue (1) : 121 -130.

PDF
Chinese Annals of Mathematics, Series B ›› 2000, Vol. 21 ›› Issue (1) : 121 -130. DOI: 10.1007/BF02731966
Article

The Heat Flow of Harmonic Maps from Noncompact Manifolds

Author information +
History +
PDF

Abstract

The authors consider the global existence of the heat flow of harmonic maps from noncompact manifolds while imposing restrictions on the initial data.

Keywords

Heat flow / Noncompact manifold / Harmonic map / 58E20 / 35R35 / 49N60 / O192 / O176.3

Cite this article

Download citation ▾
Jiayu Li, Silei Wang. The Heat Flow of Harmonic Maps from Noncompact Manifolds. Chinese Annals of Mathematics, Series B, 2000, 21(1): 121-130 DOI:10.1007/BF02731966

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bishop, R. & Crittenden, R., Geometry of manifolds, Acad. Press, New York.

[2]

Chen Y, Ding W Y. Blow-up and global existence for heat flows of harmonic maps. Invent. Math., 1990, 99: 567-578

[3]

Coron J M, Ghidaglia J M. Explosion en temps fini pour le flot des applications harmoniques. C. R. Acad. Sci. Paris, Serie I, 1989, 308: 339-344

[4]

Cheng S Y, Li P, Yau S T. On the upper estimate of the heat kernel of a complete Riemannian manifold, Amer. J. Math., 1981, 103: 1021-1063

[5]

Davies E B. Gaussian upper bounds for the heat kernels of some second-order operators on Riemannian manifolds. J. Funct. Anal., 1988, 80: 16-32

[6]

Ding W Y. Blow-up of solutions of heat flow for harmonic maps. Adv. in Math., 1990, 19: 80-92

[7]

Eells J, Sampson J H. Harmonic mappings of Riemannian manifolds. Amer, J. Math., 1964, 86: 109-169

[8]

Lohoué N. Comparaison des champs de vecteurs et des puissances du Laplacien sur une variete Riemannienne à courbure non positive. J. Funct. Anal., 1985, 61: 164-201

[9]

Li P, Schoen R. L p and mean value properties of subharmonic functions on Riemannian manifolds. Acta Math., 1984, 153: 279-301

[10]

Li P, Tam L F. The heat equation and harmonic maps of complete manifolds. Invent. Math., 1991, 105: 1-46

[11]

Li J, Wang S. Existence of harmonic functions with finite energy on complete Riemannian manifolds. J. of Partial Diff. Equat., 1994, 7(4): 55-63

[12]

Li P, Yau S T. On the parabolic kernel of the Schrödinger operator. Acta Math., 1986, 156: 153-201

[13]

Soyeur A. A global existence result for the heat flow of harmonic maps. Comm. in Part. Diff. Equat., 1990, 15: 237-244

[14]

Struwe M. On the evolution of harmonic maps in higher dimensions. J. Diff. Geom., 1988, 28: 485-502

[15]

Strichartz R S. Analysis of the Laplacian on the complete Riemannian manifold. J. Funct. Anal., 1983, 52: 48-79

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/