Genus Minimizing in Symplectic 4-Manifolds

Yongseung Cho , Misung Cho

Chinese Annals of Mathematics, Series B ›› 2000, Vol. 21 ›› Issue (1) : 115 -120.

PDF
Chinese Annals of Mathematics, Series B ›› 2000, Vol. 21 ›› Issue (1) : 115 -120. DOI: 10.1007/BF02731965
Article

Genus Minimizing in Symplectic 4-Manifolds

Author information +
History +
PDF

Abstract

The authors show that a symplectically embedded surface in a symplectic 4-manifold with b 2 + greater than one minimizes genus in its homology class.

Keywords

Generalized Thorn Conjecture / Seiberg-Witten invariant / Symplectic 4-manifolds / 58B15 / 57R40 / O189.3+2

Cite this article

Download citation ▾
Yongseung Cho, Misung Cho. Genus Minimizing in Symplectic 4-Manifolds. Chinese Annals of Mathematics, Series B, 2000, 21(1): 115-120 DOI:10.1007/BF02731965

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Auckly, D., Homotopy K3 surfaces and gluing results in Seiberg-Witten theory, Three lectures for the GARC, 1996.

[2]

Cho, Y. S., Seiberg-Witten invariants on non-symplectic 4-manifolds, to appear in Osaka J. Math..

[3]

Cho Y S. Finite group actions on Spin c bundles. Acta Math. Hungar., 1999, 84(1–2): 97-114

[4]

Cho, Y. S., Generalized Thom Conjecture for almost complex manifolds, Preprint.

[5]

Cho Y S. Finite group actions on the moduli space of self-dual connections (I), Thins. A. M. S., 1991, 323(1): 233-261

[6]

Cho Y S. Equivariant metrics for smooth moduli spaces. Topology and its Applications, 1995, 62: 77-85

[7]

Cho, M. S. & Cho, Y. S., The geography of simply connected symplectic manifolds, Preprint.

[8]

Donaldson S. The Seiberg-Witten equations and 4-manifold topology. Bull. of A. M. S., 1995, 33(1): 45-70

[9]

Kirby, R., Problems in low-dimensional topology, Berkeley, 1995.

[10]

Kronheimer P, Mrowka T. The geuns of embedded surfaces in the projective plane. Math. Res. Lett., 1994, 1: 797-808

[11]

McDuff D. The structure of rational and ruled symplectic 4-manifolds. Jour. of A. M. S., 1990, 3: 679-712

[12]

McDuff, D. & Salamon, D., Introduction to symplectic topology, Clarendon Press, Oxford, 1995.

[13]

Morgan, J., Szabó, Z. & Taubes, C., A product formula for the Seiberg-Witten invariants and the generalized Thom Conjecture, Preprint, 1995.

[14]

Taubes C. The Seiberg-Witten invariants and symplectic forms. Math. Res. Lett., 1994, 1: 809-822

[15]

Taubes C. The Seinerg-Witten invariants and Gromov invariants. Math. Res. Lett., 1994, 1: 221-238

[16]

Taubes, C., From the Seiberg-Witten equations to pseudd-holomorphic curves, Preprint.

[17]

Witten E. Monopoles and 4-manifolds. Math. Res. Lett., 1994, 1: 769-796

AI Summary AI Mindmap
PDF

164

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/