PDF
Abstract
Based on the spectral flow and the stratification structures of the symplectic group Sp(2n, C), the Maslov-type index theory and its generalization, the ω-index theory parameterized by all ω on the unit circle, for arbitrary paths in Sp(2n, C) are established. Then the Bott-type iteration formula of the Maslov-type indices for iterated paths in Sp(2n, C) is proved, and the mean index for any path in Sp(2n, C) is defined. Also, the relation among various Maslov-type index theories is studied.
Keywords
Maslov-type index theory
/
Symplectic path
/
Spectral flow
/
Relative Morse index
/
ω-index
/
58E05
/
58G99
/
O176.3
/
O19
Cite this article
Download citation ▾
Yiming Long, Chaofeng Zhu.
Maslov-Type Index Theory for Symplectic Paths and Spectral Flow (II).
Chinese Annals of Mathematics, Series B, 2000, 21(1): 89-108 DOI:10.1007/BF02731963
| [1] |
Arnol’d V I. Characteristic class entering quantization conditions. Funkts. Anal. Priloch., 1967, 1: 1-14
|
| [2] |
An T, Long Y. On the index theories of second order Hamiltonian systems. Nonlinear Anal. T. M. A., 1998, 34: 585-592
|
| [3] |
Atiyah M F, Patodi V K, Singer I M. Spectral asymmetry and Riemannian geometry I. Proc. Camb. Phic. Soc., 1975, 77: 43-69
|
| [4] |
Atiyah M F, Patodi V K, Singer I M. Spectral asymmetry and Riemannian geometry III. Proc. Camb. Phic. Soc., 1976, 79: 71-99
|
| [5] |
Amann H, Zehnder E. Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations. Ann. Scuola Norm. Super. Pisa., CI. Sci. Series 4, 1980, 7: 539-603
|
| [6] |
Amann H, Zehnder E. Periodic solutions of asymptotically linear Hamiltonian systems. Manus. Math., 1980, 32: 149-189
|
| [7] |
Bott R. On the iteration of closed geodesics and the Sturm intersection theory. Comm. Pure Appl. Math., 1956, 9: 171-206
|
| [8] |
Chang K C, Liu J Q, Liu M J. Nontrivial periodic solutions for strong resonance Hamiltonian systems. Ann. Inst. H. Poincaré, Analyse non linéaire., 1997, 14: 103-117
|
| [9] |
Cappell S E, Lee R, Miller E Y. On the Maslov index. Comm. Pure Appl. Math., 1994, 47: 121-186
|
| [10] |
Conway J B. A course in functional analysis, Second edition, GTM 96, 1990, Berlin: Springer-Verlag
|
| [11] |
Conley C, Zehnder E. Morse type index theory for flows and periodic solutions for Hamiltonian equations. Comm. Pure Appl. Math., 1984, 37: 207-254
|
| [12] |
Dong D, Long Y. The iteration formula of the Maslov-type index theory with applications to nonlinear Hamiltonian systems. Trans. Amer. Math. Soc., 1997, 349: 2219-2261
|
| [13] |
Duistermaat J J. On the Morse index in variational calculus. Adv. Math., 1976, 21: 173-195
|
| [14] |
Dai X, Zhang W. Higher spectral flow. Math. Res. Letter, 1996, 3: 93-102
|
| [15] |
Dai X, Zhang W. Higher spectral flow. J. Funct. Analysis., 1998, 157: 432-469
|
| [16] |
Ekeland I. Convexity methods in Hamiltonian mechanics, 1990, Berlin: Springer-Verlag
|
| [17] |
Fei G, Qiu Q. Periodic solutions of asymptotically linear Hamiltonian systems. Chin. Ann. of Math., 1997, 18B(3): 359-372
|
| [18] |
Han J, Long Y. Normal forms of symplectic matrices, II, Nankai Inst. of Math. Nankai Univ. Preprint, 1997. Acta Sci. Univ. Nankai, 1999, 32: 30-41
|
| [19] |
Liu C, Long Y. An optimal increasing estimate of the iterated Maslov-type indices. Chinese Science Bulletin, 1997, 42: 2275-2277
|
| [20] |
Long Y, An T. Indexing the domains of instability for Hamiltonian systems. NoDea., 1998, 5: 461-478
|
| [21] |
Long Y. Maslov-type indices, degenerate critical points, and asymptotically linear Hamiltonian systems. Science in China (Scientia Sinica), Series A, 1990, 33: 1409-1419
|
| [22] |
Long, Y., The index theory of Hamiltonian systems with applications (in Chinese), Science Press, Beijing, 1993.
|
| [23] |
Long, Y., Periodic points of Hamiltonian diffeomorphisms on a tori and a conjecture of C. Conley, ETH-Zürich Preprint, Dec. 1994 (Revised 1996, 1998).
|
| [24] |
Long Y. The topological structure of ω-subsets of symplectic groups, Nankai Inst. of Math. Nankai Univ. Preprint, 1995; Revised 1997. Acta Math. Sinica English Series, 1999, 15: 255-268
|
| [25] |
Long Y. Bott formula of the Maslov-type index theory. Pacific J. of Math., 1999, 187: 113-149
|
| [26] |
Long Y. A Maslov-type index theory for symplectic paths. Top. Meth. Nonl. Anal., 1997, 10: 47-78
|
| [27] |
Long, Y. & Dong, D., Normal forms of symplectic matrices, Nankai Inst. of Math. Nankai Univ. Preprint, 1995; Acta Math. Sinica (to appear).
|
| [28] |
Long, Y. & Zehnder, E., Morse theory for forced oscillations of asymptotically linear Hamiltonian systems, in Stoc. Proc. Phys. and Geom., S. Albeverio et al. ed, World Sci., 1990, 528-563.
|
| [29] |
Melrose R B, Piazza P. Families of Dirac operators, boundaries and the b-calculus. J. Diff. Geom., 1997, 46: 99-180
|
| [30] |
Robbin J, Salamon D. Maslov index theory for paths. Topology, 1993, 32: 827-844
|
| [31] |
Robbin J, Salamon D. The spectral flow and the Maslov index. Bull. London Math. Soc., 1995, 27: 1-33
|
| [32] |
Salamon D, Zehnder E. Morse theory for periodic solutions of Hamiltonian systems and the Maslov index. Comm. Pure and Appl. Math., 1992, 45: 1303-1360
|
| [33] |
Viterbo C. Equivalent Morse theory for starshaped Hamiltonian systems. Trans. AMS, 1989, 311: 621-655
|
| [34] |
Viterbo C. A new obstruction to embedding Langrangian tori. Invent. Math., 1990, 100: 301-320
|
| [35] |
Zhu C, Long Y. Maslov-type index theory for symplectic paths and spectral flow (I), Nankai Inst. of Math. Nankai Univ. Preprint, 1998. Chin. Ann. of Math., 1999, 20B(4): 413-424
|