Maslov-Type Index Theory for Symplectic Paths and Spectral Flow (II)

Yiming Long , Chaofeng Zhu

Chinese Annals of Mathematics, Series B ›› 2000, Vol. 21 ›› Issue (1) : 89 -108.

PDF
Chinese Annals of Mathematics, Series B ›› 2000, Vol. 21 ›› Issue (1) : 89 -108. DOI: 10.1007/BF02731963
Article

Maslov-Type Index Theory for Symplectic Paths and Spectral Flow (II)

Author information +
History +
PDF

Abstract

Based on the spectral flow and the stratification structures of the symplectic group Sp(2n, C), the Maslov-type index theory and its generalization, the ω-index theory parameterized by all ω on the unit circle, for arbitrary paths in Sp(2n, C) are established. Then the Bott-type iteration formula of the Maslov-type indices for iterated paths in Sp(2n, C) is proved, and the mean index for any path in Sp(2n, C) is defined. Also, the relation among various Maslov-type index theories is studied.

Keywords

Maslov-type index theory / Symplectic path / Spectral flow / Relative Morse index / ω-index / 58E05 / 58G99 / O176.3 / O19

Cite this article

Download citation ▾
Yiming Long, Chaofeng Zhu. Maslov-Type Index Theory for Symplectic Paths and Spectral Flow (II). Chinese Annals of Mathematics, Series B, 2000, 21(1): 89-108 DOI:10.1007/BF02731963

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arnol’d V I. Characteristic class entering quantization conditions. Funkts. Anal. Priloch., 1967, 1: 1-14

[2]

An T, Long Y. On the index theories of second order Hamiltonian systems. Nonlinear Anal. T. M. A., 1998, 34: 585-592

[3]

Atiyah M F, Patodi V K, Singer I M. Spectral asymmetry and Riemannian geometry I. Proc. Camb. Phic. Soc., 1975, 77: 43-69

[4]

Atiyah M F, Patodi V K, Singer I M. Spectral asymmetry and Riemannian geometry III. Proc. Camb. Phic. Soc., 1976, 79: 71-99

[5]

Amann H, Zehnder E. Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations. Ann. Scuola Norm. Super. Pisa., CI. Sci. Series 4, 1980, 7: 539-603

[6]

Amann H, Zehnder E. Periodic solutions of asymptotically linear Hamiltonian systems. Manus. Math., 1980, 32: 149-189

[7]

Bott R. On the iteration of closed geodesics and the Sturm intersection theory. Comm. Pure Appl. Math., 1956, 9: 171-206

[8]

Chang K C, Liu J Q, Liu M J. Nontrivial periodic solutions for strong resonance Hamiltonian systems. Ann. Inst. H. Poincaré, Analyse non linéaire., 1997, 14: 103-117

[9]

Cappell S E, Lee R, Miller E Y. On the Maslov index. Comm. Pure Appl. Math., 1994, 47: 121-186

[10]

Conway J B. A course in functional analysis, Second edition, GTM 96, 1990, Berlin: Springer-Verlag

[11]

Conley C, Zehnder E. Morse type index theory for flows and periodic solutions for Hamiltonian equations. Comm. Pure Appl. Math., 1984, 37: 207-254

[12]

Dong D, Long Y. The iteration formula of the Maslov-type index theory with applications to nonlinear Hamiltonian systems. Trans. Amer. Math. Soc., 1997, 349: 2219-2261

[13]

Duistermaat J J. On the Morse index in variational calculus. Adv. Math., 1976, 21: 173-195

[14]

Dai X, Zhang W. Higher spectral flow. Math. Res. Letter, 1996, 3: 93-102

[15]

Dai X, Zhang W. Higher spectral flow. J. Funct. Analysis., 1998, 157: 432-469

[16]

Ekeland I. Convexity methods in Hamiltonian mechanics, 1990, Berlin: Springer-Verlag

[17]

Fei G, Qiu Q. Periodic solutions of asymptotically linear Hamiltonian systems. Chin. Ann. of Math., 1997, 18B(3): 359-372

[18]

Han J, Long Y. Normal forms of symplectic matrices, II, Nankai Inst. of Math. Nankai Univ. Preprint, 1997. Acta Sci. Univ. Nankai, 1999, 32: 30-41

[19]

Liu C, Long Y. An optimal increasing estimate of the iterated Maslov-type indices. Chinese Science Bulletin, 1997, 42: 2275-2277

[20]

Long Y, An T. Indexing the domains of instability for Hamiltonian systems. NoDea., 1998, 5: 461-478

[21]

Long Y. Maslov-type indices, degenerate critical points, and asymptotically linear Hamiltonian systems. Science in China (Scientia Sinica), Series A, 1990, 33: 1409-1419

[22]

Long, Y., The index theory of Hamiltonian systems with applications (in Chinese), Science Press, Beijing, 1993.

[23]

Long, Y., Periodic points of Hamiltonian diffeomorphisms on a tori and a conjecture of C. Conley, ETH-Zürich Preprint, Dec. 1994 (Revised 1996, 1998).

[24]

Long Y. The topological structure of ω-subsets of symplectic groups, Nankai Inst. of Math. Nankai Univ. Preprint, 1995; Revised 1997. Acta Math. Sinica English Series, 1999, 15: 255-268

[25]

Long Y. Bott formula of the Maslov-type index theory. Pacific J. of Math., 1999, 187: 113-149

[26]

Long Y. A Maslov-type index theory for symplectic paths. Top. Meth. Nonl. Anal., 1997, 10: 47-78

[27]

Long, Y. & Dong, D., Normal forms of symplectic matrices, Nankai Inst. of Math. Nankai Univ. Preprint, 1995; Acta Math. Sinica (to appear).

[28]

Long, Y. & Zehnder, E., Morse theory for forced oscillations of asymptotically linear Hamiltonian systems, in Stoc. Proc. Phys. and Geom., S. Albeverio et al. ed, World Sci., 1990, 528-563.

[29]

Melrose R B, Piazza P. Families of Dirac operators, boundaries and the b-calculus. J. Diff. Geom., 1997, 46: 99-180

[30]

Robbin J, Salamon D. Maslov index theory for paths. Topology, 1993, 32: 827-844

[31]

Robbin J, Salamon D. The spectral flow and the Maslov index. Bull. London Math. Soc., 1995, 27: 1-33

[32]

Salamon D, Zehnder E. Morse theory for periodic solutions of Hamiltonian systems and the Maslov index. Comm. Pure and Appl. Math., 1992, 45: 1303-1360

[33]

Viterbo C. Equivalent Morse theory for starshaped Hamiltonian systems. Trans. AMS, 1989, 311: 621-655

[34]

Viterbo C. A new obstruction to embedding Langrangian tori. Invent. Math., 1990, 100: 301-320

[35]

Zhu C, Long Y. Maslov-type index theory for symplectic paths and spectral flow (I), Nankai Inst. of Math. Nankai Univ. Preprint, 1998. Chin. Ann. of Math., 1999, 20B(4): 413-424

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/