Equivalence between Exact Internal Controllability of the Kirchhoff Plate-Like Equation and the Wave Equation

Kangsheng Liu , Xinhui Yu

Chinese Annals of Mathematics, Series B ›› 2000, Vol. 21 ›› Issue (1) : 71 -76.

PDF
Chinese Annals of Mathematics, Series B ›› 2000, Vol. 21 ›› Issue (1) : 71 -76. DOI: 10.1007/BF02731960
Article

Equivalence between Exact Internal Controllability of the Kirchhoff Plate-Like Equation and the Wave Equation

Author information +
History +
PDF

Abstract

When the rotatory inertia is taken into account, vibrations of a linear plate can be described by the Kirchhoff plate equation. Consider this equation with locally distributed control forces and some boundary condition which is the simply supported boundary condition for a rectangular plate. In this paper, the authors establish exact controllability of the system in terms of the equivalence to exact internal controllability of the wave equation, by means of a frequency domain characterization of exact controllability introduced recently in [11].

Keywords

Kirchhoff plate equation / Locally distributed control / Exact controllability / Wave equation / Frequency domain condition / 93B05 / 35B37 / 35B40 / O231 / O175.21

Cite this article

Download citation ▾
Kangsheng Liu, Xinhui Yu. Equivalence between Exact Internal Controllability of the Kirchhoff Plate-Like Equation and the Wave Equation. Chinese Annals of Mathematics, Series B, 2000, 21(1): 71-76 DOI:10.1007/BF02731960

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams, R. A., Sobolev space, Academic Press, 1975.

[2]

Bardos C, Lebeau G, Rauch J. Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Cont. Optim., 1992, 30: 1024-1065

[3]

Bardos, C., Lebeau, G. & Rauch, J., Un example d’utilisation des notions de propagation pour le contrôle et la stabilisation des les problèmes hyperboliques, Rend. Sem. Mat. Univ. Pol. Torino, 1988, Spec. Issue (1989), 11-31.

[4]

Burq N. Contrôlabilité exacte des ondes dans des domaines peu réguliers. Asymptotic Analysis, 1997, 14: 157-191

[5]

Haraux A. Séries lacunaires et contrôle semi-interne des vibrations d’une plaque rectangulaire. J. Math. Pures Appl., 1989, 68: 457-465

[6]

Jaffard S. Contrôle interne exact des vibrations d’une plaque rectangulaire. Portugal Math., 1990, 47: 423-429

[7]

Lagnese, J., Boundary stabilization of thin plates, Vol. 10 of SIAM studies in applied mathematics, Society for Industrial and Applied Mathematics, Philadelphia, 1989.

[8]

Lagnese J, Lions J L. Modelling analysis and control of thin plates, 1988, Paris: RMA6, Masson

[9]

Komornik V. On the exact internal controllability of a petrowsky system. J. Math. Pures Appl., 1992, 71: 331-342

[10]

Lions, J. L., Contrôlabilitè exacte perturbations et stabilisation de systèmes distribues, Tome 1, Collection RMA 8, Masson, Paris, 1988.

[11]

Liu K. Locally distributed control and damping for the conservative systems. SIAM J. Cont. Optim., 1997, 35: 1574-1590

[12]

Zabczyk J. Remarks on the algebraic Riccati equation in Hilbert space. Appl. Math. Optim., 1976, 2: 251-258

[13]

Zuazua, E., Contrôlabilité exact en un temps arbitrairement petit de quelques modèles de plaques, in [10, Appendix I].

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/