On the Diffusion Phenomenon of Quasilinear Hyperbolic Waves

Han Yang , Albert Milani

Chinese Annals of Mathematics, Series B ›› 2000, Vol. 21 ›› Issue (1) : 63 -70.

PDF
Chinese Annals of Mathematics, Series B ›› 2000, Vol. 21 ›› Issue (1) : 63 -70. DOI: 10.1007/BF02731959
Article

On the Diffusion Phenomenon of Quasilinear Hyperbolic Waves

Author information +
History +
PDF

Abstract

The authors consider the asymptotic behavior of solutions of the quasilinear hyperbolic equation with linear damping $$u_{tt}+u_t-{\rm div}(a(\nabla_u)\nabla_u)=0,$$ and show that, at least when n ≤ 3, they tend, as t → +∞, to those of the nonlinear parabolic equation $$v_t-{\rm div}(a(\nabla_v)\nabla_v)=0,$$ in the sense that the norm $\|u(.,t)-v(.,t)\|{_L\infty}({\rm R}^n)$ of the difference u - v decays faster than that of either u or v. This provides another example of the diffusion phenomenon of nonlinear hyperbolic waves, first observed by Hsiao, L. and Liu Taiping (see [1, 2]).

Keywords

Asymptotic behavior of solutions / Quasilinear hyperbolic and parabolic equations / Diffusion phenomenon / 35B40 / 35L70 / O175.27 / O175.21

Cite this article

Download citation ▾
Han Yang, Albert Milani. On the Diffusion Phenomenon of Quasilinear Hyperbolic Waves. Chinese Annals of Mathematics, Series B, 2000, 21(1): 63-70 DOI:10.1007/BF02731959

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hsiao L, Taiping L. Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservations with damping. Comm. Math. Phys., 1992, 143: 599-605

[2]

Hsiao L, Liu T. Nonlinear diffusive phenomena of nonlinear hyperbolic systems. Chin. Ann. of Math., 1993, 14B(4): 465-480

[3]

Klainerman S, Ponce G. Global, small amplitude solutions to nonlinear evolution equations. Comm. Pure Appl. Math., 1984, 37: 443-455

[4]

Li Ta-tsien, Nonlinear heat conduction with finite speed of propagation, in Proceedings of the China-Japan symposium on reaction diffusion equations and their applcations to computational aspects, World Scientific, 1997.

[5]

Li Ta-tsien & Chun Yunmei, Global classical solutions for nonlinear evolution equations, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 45, Longman Scientific & Technical, 1992.

[6]

Nishihara K. Convergence rates to nonlinear diffusion waves for solutions of system of hyperbolic conservation laws with linear damping. J. Diff. Eqns., 1996, 131: 171-188

[7]

Nishihara K. Asymptotic behavior of solutions of quasilinear hyperbolic equations with linear damping. J. Diff. Eqns., 1997, 137: 384-395

[8]

Songmu Z, Yunmei C. Global existence for nonlinear parabolic equations. Chin. Ann. of Math., 1986, 7B(1): 57-73

[9]

Yachun L. Classical solutions to fully nonlinear wave equations with dissipation. Chin. Ann. of Math., 1996, 17A(4): 451-166

[10]

Matsumura A. On the asymptotic behavior of solutions of semilinear wave equations. Publ. RIMS Kyoto Univ., 1976, 121: 169-189

[11]

Racke, R., Lectures on nonlinear evolution equations, Vieweg, 1992.

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/