Notes on Glaisher’s Congruences

Shaofang Hong

Chinese Annals of Mathematics, Series B ›› 2000, Vol. 21 ›› Issue (1) : 33 -38.

PDF
Chinese Annals of Mathematics, Series B ›› 2000, Vol. 21 ›› Issue (1) : 33 -38. DOI: 10.1007/BF02731955
Article

Notes on Glaisher’s Congruences

Author information +
History +
PDF

Abstract

Let p be an odd prime and let n ≥ 1, k ≥ 0 and r be integers. Denote by B k the k-th Bernoulli number. It is proved that (i) If r ≥ 1 is odd and suppose pr + 4, then ${άthop♪m⌜mits_{j=1}^{p-1}} {1⩈er{(np+j)^r}}≡uiv-{(2n+1)r(r+1)⩈er{2(r+2)}}B_{p-r-2}p^2 ({⤪ mod} p^3)$. (ii) If r ≥ 2 is even and suppose pr + 3, then ${άthop♪m⌜mits_{j=1}^{p-1}} {1⩈er{(np+j)^r}}≡uiv-{r⩈er{r+1}}B_{p-r-1}p ({⤪ mod} p^2)$. (iii) ${άthop♪m⌜mits_{j=1}^{p-1}} {1⩈er{(np+j)}^{p-2}}≡uiv-(2n+1)p ({⤪ mod} p^2)$. This result generalizes the Glaisher’s congruence. As a corollary, a generalization of the Wolsten-holme’s theorem is obtained.

Keywords

Glaisher’s congruence / kth Bernoulli number / Teichmuller character / p-adic L function / 11A41 / 11S80 / O156.1

Cite this article

Download citation ▾
Shaofang Hong. Notes on Glaisher’s Congruences. Chinese Annals of Mathematics, Series B, 2000, 21(1): 33-38 DOI:10.1007/BF02731955

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Boyd D. A p-adic study of the partial sums of the harmonic series. Experiment Math., 1994, 3: 287-302

[2]

Dickson, L. E., History of the Theory of Numbers, Vol.I, Chelsea, New York, 1952 (especially Chapter 3).

[3]

Glaisher J W L. On the residues of the sums of products of the first p — 1 numbers, and their powers, to modulus p 2 or p 3. Quart. J. Pure Appl. Math., 1900, 31: 321-353

[4]

Glaisher J W L. On the residues of the inverse powers of numbers in arithmetic progression. Quart. J. Pure Appl. Math., 1901, 32: 271-305

[5]

Hardy G H, Wright E M. An Introduction to the Theory of Numbers, 1960 4th London: Oxford Univ. Press

[6]

Ireland K, Rosen M. A Classical Introduction to Modern Number Theory, 1982, New York: Springer-Verlag

[7]

Lehmer E. On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson. Ann. Math., 1938, 39: 350-360

[8]

Washington L. p-adic L-functions and sums of powers. J. Number Theory, 1998, 69: 50-61

[9]

Washington L. Introduction to Cyclotomic Fields, 1982, New York: Springer-Verlag

AI Summary AI Mindmap
PDF

272

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/