Probing the Compositional and Structural Effects on the Electrochemical Performance of Na(Mn-Fe-Ni)O2 Cathodes in Sodium-Ion Batteries

Samriddhi Saxena , Hari Narayanan Vasavan , Neha Dagar , Karthik Chinnathambi , Velaga Srihari , Asish Kumar Das , Pratiksha Gami , Sonia Deswal , Pradeep Kumar , Himanshu Kumar Poswal , Sunil Kumar

Battery Energy ›› 2025, Vol. 4 ›› Issue (4) : e70018

PDF
Battery Energy ›› 2025, Vol. 4 ›› Issue (4) :e70018 DOI: 10.1002/bte2.70018
RESEARCH ARTICLE

Probing the Compositional and Structural Effects on the Electrochemical Performance of Na(Mn-Fe-Ni)O2 Cathodes in Sodium-Ion Batteries

Author information +
History +
PDF

Abstract

This study systematically investigates an Mn-Fe-Ni pseudo-ternary system for Na(Mn-Fe-Ni)O2 cathodes, focusing on the effects of varying transition metal fractions on structural and electrochemical properties. X-ray diffraction reveals that increasing Mn content induces biphasic behavior. A higher Ni content reduces the c parameter, while higher Mn and Fe concentrations expand the lattice. Average particle size increases with an increase in Mn content and Fe/Ni ratio. NaMn0.500Fe0.125Ni0.375O2 delivers a high specific capacity of ~149 mAh g-1 in the 2.0-4.0 V range. Galvanostatic charge-discharge and dQ/dV versus V curves suggest that a Ni/Fe ratio > 1 enhances specific capacity and lowers voltage polarization in the materials. NaMn0.500Fe0.250Ni0.250O2 demonstrated the best rate performance, exhibiting 85.7% capacity at 1C and 69.7% at 3C, compared to 0.1C, while biphasic NaMn0.625Fe0.125Ni0.250O2 (MFN-512) excelled in cyclic stability, retaining 93% of capacity after 100 cycles. The performance of MFN-512 in a full cell configuration was studied with hard carbon as the anode, resulting in a specific capacity of ~92 mAh g-1 and a nominal voltage of ~2.9 V at a 0.1C rate, demonstrating its potential in practical applications. Transmission electron microscopy confirmed the biphasic nature of MFN-512, with columnar growth of P2 and O3 phases. Electrochemical impedance spectroscopy revealed that better-performing samples have lower charge transfer resistance. Operando Synchrotron XRD reveals reversible phase transformations in MFN-512, driven by its optimized transition metal ratios and phase fraction. This work outlines a systematic approach to optimizing low-cost, high-performance Mn-Fe-Ni layered oxides.

Keywords

biphasic structure / electrochemical performance / layered oxides / Mn-Fe-Ni system / Na-ion batteries

Cite this article

Download citation ▾
Samriddhi Saxena, Hari Narayanan Vasavan, Neha Dagar, Karthik Chinnathambi, Velaga Srihari, Asish Kumar Das, Pratiksha Gami, Sonia Deswal, Pradeep Kumar, Himanshu Kumar Poswal, Sunil Kumar. Probing the Compositional and Structural Effects on the Electrochemical Performance of Na(Mn-Fe-Ni)O2 Cathodes in Sodium-Ion Batteries. Battery Energy, 2025, 4(4): e70018 DOI:10.1002/bte2.70018

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

K. Kubota, N. Yabuuchi, H. Yoshida, M. Dahbi, and S. Komaba, “Layered Oxides as Positive Electrode Materials for Na-Ion Batteries,” MRS Bulletin 39 (2014): 416-422.

[2]

I. Hasa, S. Mariyappan, D. Saurel, et al., “Challenges of Today for Na-Based Batteries of the Future: From Materials to Cell Metrics,” Journal of Power Sources 482 (2021): 228872.

[3]

J.-Y. Hwang, S.-T. Myung, and Y.-K. Sun, “Sodium-Ion Batteries: Present and Future,” Chemical Society Reviews 46 (2017): 3529-3614.

[4]

R. Usiskin, Y. Lu, J. Popovic, et al., “Fundamentals, Status and Promise of Sodium-Based Batteries,” Nature Reviews Materials 6 (2021): 1020-1035.

[5]

R. Borah, F. R. Hughson, J. Johnston, and T. Nann, “On Battery Materials and Methods,” Materials Today Advances 6 (2020): 100046.

[6]

H. Kim, H. Kim, Z. Ding, et al., “Recent Progress in Electrode Materials for Sodium-Ion Batteries,” Advanced Energy Materials 6 (2016): 1600943.

[7]

D. Kundu, E. Talaie, V. Duffort, and L. F. Nazar, “The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage,” Angewandte Chemie International Edition 54 (2015): 3431-3448.

[8]

P.-F. Wang, Y. You, Y.-X. Yin, and Y.-G. Guo, “Layered Oxide Cathodes for Sodium-Ion Batteries: Phase Transition, Air Stability, and Performance,” Advanced Energy Materials 8 (2018): 1701912.

[9]

C. Delmas, C. Fouassier, and P. Hagenmuller, “Structural Classification and Properties of the Layered Oxides,” Physica B+C 99 (1980): 81-85.

[10]

S. Saxena, M. Badole, H. N. Vasavan, et al., “Elucidating the Electrochemical Behavior of a P3-Type High-Na-Content Cathode,” Energy & Fuels 38 (2024): 12140.

[11]

C. Delmas, J. Braconnier, C. Fouassier, and P. Hagenmuller, “Electrochemical Intercalation of Sodium in NaxCoO2 Bronzes,” Solid State Ionics 3-4 (1981): 165-169.

[12]

W. Zuo, X. Liu, J. Qiu, et al., “Engineering Na+-Layer Spacings to Stabilize Mn-Based Layered Cathodes for Sodium-Ion Batteries,” Nature Communications 12 (2021): 4903.

[13]

P. Vassilaras, D.-H. Kwon, S. T. Dacek, et al., “Electrochemical Properties and Structural Evolution of O3-Type Layered Sodium Mixed Transition Metal Oxides With Trivalent Nickel,” Journal of Materials Chemistry A 5 (2017): 4596-4606.

[14]

D. Hao, G. Zhang, D. Ning, et al., “Design of High-Entropy P2/O3 Hybrid Layered Oxide Cathode Material for High-Capacity and High-Rate Sodium-Ion Batteries,” Nano Energy 125 (2024): 109562.

[15]

Z. Wang, L. Fang, X. Fu, et al., “A Ni/Co-Free High-Entropy Layered Cathode With Suppressed Phase Transition and Near-Zero Strain for High-Voltage Sodium-Ion Batteries,” Chemical Engineering Journal 480 (2024): 148130.

[16]

Z. Wang, S. Zhang, X. Fu, et al., “High-Entropy Mn/Fe-Based Layered Cathode With Suppressed P2-P′2 Transition and Low-Strain for Fast and Stable Sodium Ion Storage,” ACS Applied Materials & Interfaces 16 (2024): 2378-2388.

[17]

X. Qi, L. Liu, N. Song, et al., “Design and Comparative Study of O3/P2 Hybrid Structures for Room Temperature Sodium-Ion Batteries,” ACS Applied Materials & Interfaces 9 (2017): 40215-40223.

[18]

H. N. Vasavan, M. Badole, S. Saxena, et al., “Identification of Optimal Composition With Superior Electrochemical Properties Along the Zero Mn3+ Line in Na0.75(Mn-Al-Ni)O2 Pseudo Ternary System,” Journal of Energy Chemistry 96 (2024): 206-216.

[19]

S. Saxena, M. Badole, H. N. Vasavan, et al., “Deciphering the Role of Optimal P2/O3 Phase Fraction in Enhanced Cyclability and Specific Capacity of Layered Oxide Cathodes,” Chemical Engineering Journal 485 (2024): 149921.

[20]

Y. Zhuang, J. Zhao, Y. Zhao, X. Zhu, and H. Xia, “Carbon-Coated Single Crystal O3-NaFeO2 Nanoflakes Prepared via Topochemical Reaction for Sodium-Ion Batteries,” Sustainable Materials and Technologies 28 (2021): e00258.

[21]

J. Lamb and A. Manthiram, “Surface-Modified Na(Ni0.3Fe0.4Mn0.3)O2 Cathodes With Enhanced Cycle Life and Air Stability for Sodium-Ion Batteries,” ACS Applied Energy Materials 4 (2021): 11735-11742.

[22]

N. Yabuuchi, H. Yoshida, and S. Komaba, “Crystal Structures and Electrode Performance of Alpha-NaFeO2 for Rechargeable Sodium Batteries,” Electrochem 80 (2012): 716-719.

[23]

D. Susanto, M. K. Cho, G. Ali, et al., “Anionic Redox Activity as a Key Factor in the Performance Degradation of NaFeO2 Cathodes for Sodium Ion Batteries,” Chemistry of Materials 31 (2019): 3644-3651.

[24]

E. Lee, D. E. Brown, E. E. Alp, et al., “New Insights into the Performance Degradation of Fe-Based Layered Oxides in Sodium-Ion Batteries: Instability of Fe3+/Fe4+ Redox in Α-NaFeO2,” Chemistry of Materials 27 (2015): 6755-6764.

[25]

Y. Li, Y. Gao, X. Wang, et al., “Iron Migration and Oxygen Oxidation During Sodium Extraction From NaFeO2,” Nano Energy 47 (2018): 519-526.

[26]

X. Wang, G. Liu, T. Iwao, M. Okubo, and A. Yamada, “Role of Ligand-to-Metal Charge Transfer in O3-Type NaFeO2-NaNiO2 Solid Solution for Enhanced Electrochemical Properties,” Journal of Physical Chemistry C 118 (2014): 2970-2976.

[27]

I. Moeez, D. Susanto, G. Ali, H.-G. Jung, H.-D. Lim, and K. Y. Chung, “Effect of the Interfacial Protective Layer on the NaFe0.5Ni0.5O2 Cathode for Rechargeable Sodium-Ion Batteries,” Journal of Materials Chemistry A 8 (2020): 13964-13970.

[28]

J. Jayachitra, A. Balamurugan, J. Richards Joshua, et al., “Enhancing the Electrochemical Performance By Structural Evolution in O3- Nafe1-xMgxO2 Cathodes for Sodium Ion Batteries,” Inorganic Chemistry Communications 129 (2021): 108528.

[29]

L. Liu, X. Li, S.-H. Bo, et al., “High-Performance P2-Type Na2/3(Mn1/2Fe1/4Co1/4)O2 Cathode Material With Superior Rate Capability for Na-Ion Batteries,” Advanced Energy Materials 5 (2015): 1500944.

[30]

X. Ma, H. Chen, and G. Ceder, “Electrochemical Properties of Monoclinic NaMnO2,” Journal of the Electrochemical Society 158 (2011): A1307.

[31]

J. B. Goodenough, “Jahn-Teller Phenomena in Solids,” Annual Review of Materials Research 28 (1998): 1.

[32]

Z. Ma, Z. Zhao, H. Xu, et al., “A Queue-Ordered Layered Mn-Based Oxides With Al Substitution as High-Rate and High-Stabilized Cathode for Sodium-Ion Batteries,” Small 17 (2021): 2006259.

[33]

X. Zhang, Y. Qiao, S. Guo, et al., “Manganese-Based Na-Rich Materials Boost Anionic Redox in High-Performance Layered Cathodes for Sodium-Ion Batteries,” Advanced Materials 31 (2019): 1807770.

[34]

J. Darga, J. Lamb, and A. Manthiram, “Industrialization of Layered Oxide Cathodes for Lithium-Ion and Sodium-Ion Batteries: A Comparative Perspective,” Energy Technology 8 (2020): 2000723.

[35]

J. Zhao, J. Xu, D. H. Lee, N. Dimov, Y. S. Meng, and S. Okada, “Electrochemical and Thermal Properties of P2-Type Na2/3Fe1/3Mn2/3O2 for Na-Ion Batteries,” Journal of Power Sources 264 (2014): 235-239.

[36]

B. Mortemard de Boisse, D. Carlier, M. Guignard, L. Bourgeois, and C. Delmas, “P2-NaxMn1/2Fe1/2O2 Phase Used as Positive Electrode in Na Batteries: Structural Changes Induced by the Electrochemical (De)Intercalation Process,” Inorganic Chemistry 53 (2014): 11197-11205.

[37]

N. Sharma, E. Gonzalo, J. C. Pramudita, et al., “The Unique Structural Evolution of the O3-Phase Na2/3Fe2/3Mn1/3O2 During High Rate Charge/Discharge: A Sodium-Centred Perspective,” Advanced Functional Materials 25 (2015): 4994-5005.

[38]

H. N. Vasavan, M. Badole, S. Saxena, et al., “Unveiling the Potential of P3 Phase in Enhancing the Electrochemical Performance of a Layered Oxide Cathode,” Materials Today Energy 37 (2023): 101380, https://doi.org/10.1016/j.mtener.2023.101380.

[39]

H. N. Vasavan, M. Badole, S. Dwivedi, D. Kumar, P. Kumar, and S. Kumar, “Enhanced Rate Performance and Specific Capacity in Ti-Substituted P2-Type Layered Oxide Enabled by Crystal Structure and Particle Morphology Modifications,” Chemical Engineering Journal 448 (2022): 137662.

[40]

S. Komaba, T. Nakayama, A. Ogata, et al., “Electrochemically Reversible Sodium Intercalation of Layered NaNi0.5Mn0.5O2 and NaCrO2,” ECS Transactions 16 (2009): 43-55.

[41]

T.-Y. Yu, H.-H. Ryu, G. Han, and Y.-K. Sun, “Understanding the Capacity Fading Mechanisms of O3-Type Na[Ni0.5Mn0.5]O2 Cathode for Sodium-Ion Batteries,” Advanced Energy Materials 10 (2020): 2001609.

[42]

M. Jeong, H. Lee, J. Yoon, and W.-S. Yoon, “O3-type NaNi1/3Fe1/3Mn1/3O2 Layered Cathode for Na-Ion Batteries: Structural Evolution and Redox Mechanism Upon Na (De) Intercalation,” Journal of Power Sources 439 (2019): 227064.

[43]

V. A. Shevchenko, I. S. Glazkova, D. A. Novichkov, et al., “Competition Between the Ni and Fe Redox in the O3-NaNi1/3Fe1/3Mn1/3O2 Cathode Material for Na-Ion Batteries,” Chemistry of Materials 35 (2023): 4015-4025.

[44]

C. Chen, W. Huang, Y. Li, et al., “P2/O3 Biphasic Fe/Mn-Based Layered Oxide Cathode With Ultrahigh Capacity and Great Cyclability for Sodium Ion Batteries,” Nano Energy 90 (2021): 106504.

[45]

Z. Zhang, Y. Liu, Z. Liu, et al., “Dual-Strategy of Cu-Doping and O3 Biphasic Structure Enables Fe/Mn-Based Layered Oxide for High-Performance Sodium-Ion Batteries Cathode,” Journal of Power Sources 567 (2023): 232930.

[46]

N. Yabuuchi, M. Yano, H. Yoshida, S. Kuze, and S. Komaba, “Synthesis and Electrode Performance of O3-Type NaFeO2-NaNi1/2Mn1/2O2 Solid Solution for Rechargeable Sodium Batteries,” Journal of the Electrochemical Society 160 (2013): A3131-A3137.

[47]

N. Voronina, H. J. Kim, M. Shin, and S.-T. Myung, “Rational Design of Co-Free Layered Cathode Material for Sodium-Ion Batteries,” Journal of Power Sources 514 (2021): 230581.

[48]

J.-Y. Hwang, S.-T. Myung, and Y.-K. Sun, “Quaternary Transition Metal Oxide Layered Framework: O3-Type Na[Ni0.32Fe0.13Co0.15Mn0.40]O2 Cathode Material for High-Performance Sodium-Ion Batteries,” Journal of Physical Chemistry C 122 (2018): 13500-13507.

[49]

X. Sun, Y. Jin, C.-Y. Zhang, et al., “Na[Ni0.4Fe0.2Mn0.4-xTix]O2: A Cathode of High Capacity and Superior Cyclability for Na-Ion Batteries,” Journal of Materials Chemistry A: Materials for Energy and Sustainability 2 (2014): 17268-17271.

[50]

N. Li, S. Wang, E. Zhao, et al., “Tailoring Interphase Structure to Enable High-Rate, Durable Sodium-Ion Battery Cathode,” Journal of Energy Chemistry 68 (2022): 564-571.

[51]

J. Feng, S. Luo, Y. Dou, et al., “Facile Design and Synthesis of Co-Free Layered O3-Type Nani0.2Mn0.2Fe0.6O2 as Promising Cathode Material for Sodium-Ion Batteries,” Journal of Electroanalytical Chemistry 914 (2022): 116301.

[52]

Q. Liu, J. Liu, Z. Yang, H. Miao, and Y. Liu, “A High Rate and Stability Cathode Material for Half/Full Sodium-Ion Batteries: Nb-Substituted NaNi1/3Mn1/3-xFe1/3NbxO2 Layered Oxides,” Journal of Alloys and Compounds 968 (2023): 172272.

[53]

S. Xu, H. Chen, C. Li, et al., “A New High-Performance O3-NaNi0.3Fe0.2Mn0.5O2 Cathode Material for Sodium-Ion Batteries,” Ionics 29 (2023): 1873-1885.

[54]

F. Ding, C. Zhao, D. Zhou, et al., “A Novel Ni-Rich O3-Na[Ni0.60Fe0.25Mn0.15]O2 Cathode for Na-Ion Batteries,” Energy Storage Materials 30 (2020): 420-430.

[55]

H. Zhao, J. Li, W. Liu, et al., “Integrated Titanium-Substituted Air Stable O3 Sodium Layered Oxide Electrode via a Complexant Assisted Route for High Capacity Sodium-Ion Battery,” Electrochimica Acta 388 (2021): 138561.

[56]

W. Qin, Y. Liu, J. Liu, Z. Yang, and Q. Liu, “Boosting the Ionic Transport and Structural Stability of Zn-Doped O3-Type NaNi1/3Mn1/3Fe1/3O2 Cathode Material for Half/Full Sodium-Ion Batteries,” Electrochimica Acta 418 (2022): 140357.

[57]

D. Kim, E. Lee, M. Slater, W. Lu, S. Rood, and C. S. Johnson, “Layered Na[Ni1/3Fe1/3Mn1/3]O2 Cathodes for Na-Ion Battery Application,” Electrochemistry Communications 18 (2012): 66-69.

[58]

S. Feng, C. Zheng, Z. Song, et al., “Boosting Fast Ionic Transport and Stability of O3-NaNi1/3Fe1/3Mn1/3O2 Cathode via Al/Cu Synergistically Modulating Microstructure for High-Rate Sodium-Ion Batteries,” Chemical Engineering Journal 475 (2023): 146090.

[59]

M. Keller, D. Buchholz, and S. Passerini, “Layered Na-Ion Cathodes With Outstanding Performance Resulting From the Synergetic Effect of Mixed P- and O-Type Phases,” Advanced Energy Materials 6 (2016): 1501555.

[60]

D. D. Yuan, Y. X. Wang, Y. L. Cao, X. P. Ai, and H. X. Yang, “Improved Electrochemical Performance of Fe-Substituted NaNi0.5Mn0.5O2 Cathode Materials for Sodium-Ion Batteries,” ACS Applied Materials & Interfaces 7 (2015): 8585-8591.

[61]

C. Deng, E. Gabriel, P. Skinner, et al., “Origins of Irreversibility in Layered NaNixFeyMnZO2 Cathode Materials for Sodium Ion Batteries,” ACS Applied Materials & Interfaces 12 (2020): 51397-51408.

[62]

H. N. Vasavan, M. Badole, S. Saxena, et al., “Impact of P3/P2 Mixed Phase on the Structural and Electrochemical Performance of Na0.75Mn0.75Al0.25O2 Cathode,” Journal of Energy Storage 74 (2023): 109428.

[63]

H. N. Vasavan, M. Badole, S. Saxena, et al., “Rational Design of an Optimal Al-Substituted Layered Oxide Cathode for Na-Ion Batteries,” Electrochimica Acta 494 (2024): 144457.

[64]

S. Saxena, H. N. Vasavan, M. Badole, et al., “Tailored P2/O3 Phase-Dependent Electrochemical Behavior of Mn-Based Cathode for Sodium-Ion Batteries,” Journal of Energy Storage 64 (2023): 107242.

[65]

N. Dagar, S. Saxena, H. N. Vasavan, et al., “Distinct Electrochemical Behavior of P3 and P2 Polytypes of Mn/Ni-Based Na-Ion Battery Cathode,” Materials Letters 369 (2024): 136768.

[66]

A. A. Coelho, “TOPAS and TOPAS-Academic: An Optimization Program Integrating Computer Algebra and Crystallographic Objects Written in C++,” Journal of Applied Crystallography 51 (2018): 210-218.

[67]

Z.-Y. Li, X. Ma, K. Sun, et al., “Enabling an Excellent Ordering-Enhanced Electrochemistry and a Highly Reversible Whole-Voltage-Range Oxygen Anionic Chemistry for Sodium-Ion Batteries,” ACS Applied Materials & Interfaces 15 (2023): 17801-17813.

[68]

Y. Wang, J. Jin, X. Zhao, et al., “Unexpected Elevated Working Voltage by Na+/Vacancy Ordering and Stabilized Sodium-Ion Storage by Transition-Metal Honeycomb Ordering,” Angewandte Chemie International Edition 63 (2024): e202409152.

[69]

S. Hüfner, Photoelectron Spectroscopy: Principles and Applications (Springer Science & Business Media, 2013).

[70]

J. Chastain and R. C. King, Jr., Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, 1992), 40, 221.

[71]

C. Wang, L. Liu, S. Zhao, et al., “Tuning Local Chemistry of P2 Layered-Oxide Cathode for High Energy and Long Cycles of Sodium-Ion Battery,” Nature Communications 12 (2021): 2256.

[72]

M. H. Han, E. Gonzalo, G. Singh, and T. Rojo, “A Comprehensive Review of Sodium Layered Oxides: Powerful Cathodes for Na-Ion Batteries,” Energy & Environmental Science 8 (2015): 81-102.

[73]

L. Yu, Z. Cheng, K. Xu, et al., “Interlocking Biphasic Chemistry for High-Voltage P2/O3 Sodium Layered Oxide Cathode,” Energy Storage Materials 50 (2022): 730-739.

[74]

K. Wang, Z.-G. Wu, G. Melinte, et al., “Preparation of Intergrown P/O-Type Biphasic Layered Oxides as High-Performance Cathodes for Sodium Ion Batteries,” Journal of Materials Chemistry A 9 (2021): 13151-13160.

[75]

W. Weppner and R. A. Huggins, “Determination of the Kinetic Parameters of Mixed-Conducting Electrodes and Application to the System Li3Sb,” Journal of the Electrochemical Society 124 (1977): 1569-1578.

[76]

D. Di Lecce, D. Campanella, and J. Hassoun, “Insight on the Enhanced Reversibility of a Multimetal Layered Oxide for Sodium-Ion Battery,” Journal of Physical Chemistry C 122 (2018): 23925-23933.

[77]

Y. Xiao, Y.-F. Zhu, H.-R. Yao, et al., “A Stable Layered Oxide Cathode Material for High-Performance Sodium-Ion Battery,” Advanced Energy Materials 9 (2019): 1803978.

[78]

S. Komaba, N. Yabuuchi, T. Nakayama, A. Ogata, T. Ishikawa, and I. Nakai, “Study on the Reversible Electrode Reaction of Na1-xNi0.5Mn0.5O2 for a Rechargeable Sodium-Ion Battery,” Inorganic Chemistry 51 (2012): 6211-6220.

[79]

Y. Xie, H. Wang, G. Xu, et al., “In Operando XRD and TXM Study on the Metastable Structure Change of NaNi1/3Fe1/3Mn1/3O2 Under Electrochemical Sodium-Ion Intercalation,” Advanced Energy Materials 6 (2016): 1601306.

[80]

Q. Wang, S. Mariyappan, J. Vergnet, et al., “Reaching the Energy Density Limit of Layered O3-NaNi0.5Mn0.5O2 Electrodes via Dual Cu and Ti Substitution,” Advanced Energy Materials 9 (2019): 1901785.

[81]

T. Song, L. Chen, D. Gastol, et al., “High-Voltage Stabilization of O3-Type Layered Oxide for Sodium-Ion Batteries by Simultaneous Tin Dual Modification,” Chemistry of Materials 34 (2022): 4153-4165.

RIGHTS & PERMISSIONS

2025 The Author(s). Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/