High-Capacity Economically Viable Catholyte for Alkaline Aqueous Redox Flow Battery

Zahid M. Bhat , Mohammad Furquan , Muhammad A. Z. G. Sial , Umair Alam , Iqbal A. Al Hamid , Atif S. Alzahrani , Mohammad Qamar

Battery Energy ›› 2025, Vol. 4 ›› Issue (4) : e70014

PDF
Battery Energy ›› 2025, Vol. 4 ›› Issue (4) :e70014 DOI: 10.1002/bte2.70014
RESEARCH ARTICLE

High-Capacity Economically Viable Catholyte for Alkaline Aqueous Redox Flow Battery

Author information +
History +
PDF

Abstract

Alkaline aqueous organic redox flow batteries (AORFB) show great potential as viable options for storing energy in commercial power grids. While there has been notable advancement in the development of anolytes, there has been a lack of focus on the catholyte component. In this study, we present a novel all-alkaline AORFB that utilizes a highly soluble catholyte based on manganese (Mn). The formulated combination of catholyte, MnO4-/NaOH, has remarkably high solubility, approximately 3.9 M, and possesses a theoretical capacity of 105 Ah L-1. This capacity is the greatest among all reported catholytes thus far. Half-cell experiments indicate that there is a high level of reversibility and stability, with minimal capacity degradation over time. In addition to three-electrode configuration, the efficacy of MnO4-/NaOH is evaluated in full-cell redox flow systems utilizing alizarin as anolyte. The AORFB shows an open circuit voltage of approximately 1.3 V, which is nearly 250 mV higher than the state-of-the-art ferrocyanide-based AORFBs. This resulted in an energy and power output that is approximately 20% higher. In addition, the system exhibits consistent performance with minimal decrease in capacity (0.1% per day) while achieving approximately 85% energy efficiency and 100% coulombic efficiency. The impact of the cutoff potential and plausible degradation mechanisms of the catholyte are also discussed. The findings of this electrolyte formulation offer fresh impetus for developing high-capacity all-alkaline AORFBs.

Keywords

aqueous organic redox flow battery / catholyte degradation / electrolyte / high capacity / manganese catholyte

Cite this article

Download citation ▾
Zahid M. Bhat, Mohammad Furquan, Muhammad A. Z. G. Sial, Umair Alam, Iqbal A. Al Hamid, Atif S. Alzahrani, Mohammad Qamar. High-Capacity Economically Viable Catholyte for Alkaline Aqueous Redox Flow Battery. Battery Energy, 2025, 4(4): e70014 DOI:10.1002/bte2.70014

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. M. Gonzalez, J. E. Tomlinson, E. A. Martínez Ceseña, et al., “Designing Diversified Renewable Energy Systems to Balance Multisector Performance,” Nature Sustainability 6, no. 4 (2023): 415-427, https://doi.org/10.1038/s41893-022-01033-0.

[2]

T. M. Gür, “Review of Electrical Energy Storage Technologies, Materials and Systems: Challenges and Prospects for Large-Scale Grid Storage,” Energy & Environmental Science 11, no. 10 (2018): 2696-2767, https://doi.org/10.1039/C8EE01419A.

[3]

R. Mondal, R. Thimmappa, B. Nayak, et al., “A Spontaneous Hydrogen Fuel Purifier Under Truly Ambient Weather Conditions,” Energy & Environmental Science 16, no. 9 (2023): 3860-3872, https://doi.org/10.1039/D3EE02095A.

[4]

A. R. Kottaichamy, M. A. Nazrulla, M. Parmar, et al., “Ligand Isomerization Driven Electrocatalytic Switching,” Angewandte Chemie International Edition 63, no. 30 (2024): e202405664, https://doi.org/10.1002/anie.202405664.

[5]

R. B. Jethwa, S. Mondal, B. Pant, and S. A. Freunberger, “To DISP or Not? The Far-Reaching Reaction Mechanisms Underpinning Lithium-Air Batteries,” Angewandte Chemie International Edition 63, no. 28 (2024): e202316476, https://doi.org/10.1002/anie.202316476.

[6]

D. Cao, X. Shen, A. Wang, et al., “Threshold Potentials for Fast Kinetics During Mediated Redox Catalysis of Insulators in Li-O2 and Li-S Batteries,” Nature Catalysis 5, no. 3 (2022): 193-201, https://doi.org/10.1038/s41929-022-00752-z.

[7]

N. Mahne, B. Schafzahl, C. Leypold, et al., “Singlet Oxygen Generation as a Major Cause for Parasitic Reactions During Cycling of Aprotic Lithium-Oxygen Batteries,” Nature Energy 2, no. 5 (2017): 17036, https://doi.org/10.1038/nenergy.2017.36.

[8]

D. Larcher and J. M. Tarascon, “Towards Greener and More Sustainable Batteries for Electrical Energy Storage,” Nature Chemistry 7, no. 1 (2015): 19-29, https://doi.org/10.1038/nchem.2085.

[9]

H. Li, X. Cao, Y. Liu, et al., “Safety of Hydrogen Storage and Transportation: An Overview on Mechanisms, Techniques, and Challenges,” Energy Reports 8 (2022): 6258-6269, https://doi.org/10.1016/j.egyr.2022.04.067.

[10]

Y. Rong, S. Chen, C. Li, et al., “Techno-Economic Analysis of Hydrogen Storage and Transportation From Hydrogen Plant to Terminal Refueling Station,” International Journal of Hydrogen Energy 52 (2024): 547-558, https://doi.org/10.1016/j.ijhydene.2023.01.187.

[11]

K. Lin, Q. Chen, M. R. Gerhardt, et al., “Alkaline Quinone Flow Battery,” Science 349, no. 6255 (2015): 1529-1532, https://doi.org/10.1126/science.aab3033.

[12]

G. L. Soloveichik, “Flow Batteries: Current Status and Trends,” Chemical Reviews 115, no. 20 (2015): 11533-11558, https://doi.org/10.1021/cr500720t.

[13]

J. Winsberg, T. Hagemann, T. Janoschka, M. D. Hager, and U. S. Schubert, “Redox-Flow Batteries: From Metals to Organic Redox-Active Materials,” Angewandte Chemie International Edition 56, no. 3 (2017): 686-711, https://doi.org/10.1002/anie.201604925.

[14]

Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, et al., “Electrochemical Energy Storage for Green Grid,” Chemical Reviews 111, no. 5 (2011): 3577-3613, https://doi.org/10.1021/cr100290v.

[15]

V. Singh and H. R. Byon, “Solubility and Stability of Redox-Active Organic Molecules in Redox Flow Batteries,” ACS Applied Energy Materials 7 (2023): 7562-7575, https://doi.org/10.1021/acsaem.3c02171.

[16]

L. H. Thaller, “US. Patent 3996064A,” 1976, https://patents.google.com/patent/US3996064A/en.

[17]

M. Ulaganathan, V. Aravindan, Q. Yan, S. Madhavi, M. Skyllas-Kazacos, and T. M. Lim, “Recent Advancements in All-Vanadium Redox Flow Batteries,” Advanced Materials Interfaces 3, no. 1 (2016): 1-22, https://doi.org/10.1002/admi.201500309.

[18]

L. Li, X. Chen, Z. Feng, et al., “Recent Advances and Perspectives of Practical Modifications of Vanadium Redox Flow Battery Electrodes,” Green Chemistry 26 (2024): 6339-6360, https://doi.org/10.1039/D4GC00584H.

[19]

M. Gautam, Z. M. Bhat, A. Raafik, et al., “Coulombic Force Gated Molecular Transport in Redox Flow Batteries,” Journal of Physical Chemistry Letters 12, no. 5 (2021): 1374-1383, https://doi.org/10.1021/acs.jpclett.0c03584.

[20]

S. Huang, Z. Yuan, M. Salla, et al., “A Redox-Mediated Zinc Electrode for Ultra-Robust Deep-Cycle Redox Flow Batteries,” Energy & Environmental Science 16, no. 2 (2023): 438-445, https://doi.org/10.1039/D2EE02402K.

[21]

J. Luo, B. Hu, M. Hu, W. Wu, and T. L. Liu, “An Energy-Dense, Powerful, Robust Bipolar Zinc-Ferrocene Redox-Flow Battery,” Angewandte Chemie International Edition 61, no. 30 (2022): e202204030, https://doi.org/10.1002/anie.202204030.

[22]

K. Gong, F. Xu, J. B. Grunewald, et al., “All-Soluble All-Iron Aqueous Redox-Flow Battery,” ACS Energy Letters 1, no. 1 (2016): 89-93, https://doi.org/10.1021/acsenergylett.6b00049.

[23]

M. Furquan, S. Ali, S. R. Hussaini, et al., “Electrolyte Additives and 3D X-Ray Tomography Study of All Iron Redox Flow Batteries in a Full-Cell Configuration for High Capacity Retention,” Energy & Fuels 38, no. 5 (2024): 4699-4710, https://doi.org/10.1021/acs.energyfuels.3c04842.

[24]

M. Wu, Y. Jing, A. A. Wong, et al., “Extremely Stable Anthraquinone Negolytes Synthesized From Common Precursors,” Chem 6, no. 6 (2020): 1432-1442, https://doi.org/10.1016/j.chempr.2020.03.021.

[25]

G. Yang, Y. Zhu, Z. Hao, et al., “Organic Electroactive Materials for Aqueous Redox Flow Batteries,” Advanced Materials 35, no. 33 (2023): 1-28, https://doi.org/10.1002/adma.202301898.

[26]

A. Hollas, X. Wei, V. Murugesan, et al., “A Biomimetic High-Capacity Phenazine-Based Anolyte for Aqueous Organic Redox Flow Batteries,” Nature Energy 3, no. 6 (2018): 508-514, https://doi.org/10.1038/s41560-018-0167-3.

[27]

J. Xu, S. Pang, X. Wang, P. Wang, and Y. Ji, “Ultrastable Aqueous Phenazine Flow Batteries With High Capacity Operated at Elevated Temperatures,” Joule 5, no. 9 (2021): 2437-2449, https://doi.org/10.1016/j.joule.2021.06.019.

[28]

S. Jin, Y. Jing, D. G. Kwabi, et al., “A Water-Miscible Quinone Flow Battery With High Volumetric Capacity and Energy Density,” ACS Energy Letters 4, no. 6 (2019): 1342-1348, https://doi.org/10.1021/acsenergylett.9b00739.

[29]

Z. Huang, A. Mu, L. Wu, B. Yang, Y. Qian, and J. Wang, “Comprehensive Analysis of Critical Issues in All-Vanadium Redox Flow Battery,” ACS Sustainable Chemistry & Engineering 10, no. 24 (2022): 7786-7810, https://doi.org/10.1021/acssuschemeng.2c01372.

[30]

Z. Huang, Y. Liu, X. Xie, Q. Huang, and C. Huang, “Experimental Study on Efficiency Improvement Methods of Vanadium Redox Flow Battery for Large-Scale Energy Storage,” Electrochimica Acta 466, no. August (2023): 143025, https://doi.org/10.1016/j.electacta.2023.143025.

[31]

L. Xia, T. Long, W. Li, et al., “Highly Stable Vanadium Redox-Flow Battery Assisted by Redox-Mediated Catalysis,” Small 16, no. 38 (2020): 1-10, https://doi.org/10.1002/smll.202003321.

[32]

B. Hu, C. Debruler, Z. Rhodes, and T. L. Liu, “Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) Toward Sustainable and Safe Energy Storage,” Journal of the American Chemical Society 139, no. 3 (2017): 1207-1214, https://doi.org/10.1021/jacs.6b10984.

[33]

D. G. Kwabi, Y. Ji, and M. J. Aziz, “Electrolyte Lifetime in Aqueous Organic Redox Flow Batteries: A Critical Review,” Chemical Reviews 120, no. 14 (2020): 6467-6489, https://doi.org/10.1021/acs.chemrev.9b00599.

[34]

Z. Manzoor Bhat, M. Furquan, M. Aurang Zeb Gul Sial, U. Alam, A. Saeed Alzahrani, and M. Qamar, “Implications of Electrode Modifications in Aqueous Organic Redox Flow Batteries,” Journal of Energy Chemistry 95 (2024): 499-510, https://doi.org/10.1016/j.jechem.2024.03.058.

[35]

Y. Yao, W. Ma, J. Lei, Z. Wang, Y. C. Lu, and L. Liu, “Nonionic Oligo(Ethylene Glycol)-Substituted Viologen Negolytes for Aqueous Organic Redox Flow Batteries,” Journal of Materials Chemistry A 11, no. 24 (2023): 12984-12991, https://doi.org/10.1039/d2ta09177a.

[36]

X. Liu, H. Zhang, C. Liu, et al., “Commercializable Naphthalene Diimide Anolytes for Neutral Aqueous Organic Redox Flow Batteries,” Angewandte Chemie International Edition 63 (2024): e202405427, https://doi.org/10.1002/anie.202405427.

[37]

E. F. Kerr, Z. Tang, T. Y. George, et al., “High Energy Density Aqueous Flow Battery Utilizing Extremely Stable, Branching-Induced High-Solubility Anthraquinone Near Neutral PH,” ACS Energy Letters 8, no. 1 (2023): 600-607, https://doi.org/10.1021/acsenergylett.2c01691.

[38]

W. Li, E. Kerr, M. A. Goulet, et al., “A Long Lifetime Aqueous Organic Solar Flow Battery,” Advanced Energy Materials 9, no. 31 (2019): 1-8, https://doi.org/10.1002/aenm.201900918.

[39]

Y. Liu, P. Zhang, Z. Wu, et al., “Biomimetic Naphthoquinone Zwitterion Derivative With Water-Solubilizing Amino Acid Side Chain for High-Stability Aqueous Redox Flow Batteries,” ACS Energy Letters 9, no. 2 (2024): 586-593, https://doi.org/10.1021/acsenergylett.3c02530.

[40]

R. Zhang, H. Zhou, P. Sun, et al., “Research Progress on Nanoparticles Applied in Redox Flow Batteries,” Battery Energy 1, no. 4 (2022): 20220023, https://doi.org/10.1002/bte2.20220023.

[41]

L. Zhang and G. Yu, “Recent Developments in Materials and Chemistries for Redox Flow Batteries,” ACS Materials Letters 5, no. 11 (2023): 3007-3009, https://doi.org/10.1021/acsmaterialslett.3c01191.

[42]

C. Wang, B. Yu, Y. Liu, et al., “N-Alkyl-Carboxylate-Functionalized Anthraquinone for Long-Cycling Aqueous Redox Flow Batteries,” Energy Storage Materials 36 (2021): 417-426, https://doi.org/10.1016/j.ensm.2021.01.019.

[43]

C. Wang, Z. Yang, B. Yu, et al., “Alkaline Soluble 1,3,5,7-Tetrahydroxyanthraquinone With High Reversibility as Anolyte for Aqueous Redox Flow Battery,” Journal of Power Sources 524 (2022): 231001, https://doi.org/10.1016/j.jpowsour.2022.231001.

[44]

M. Pan, M. Shao, and Z. Jin, “Development of Organic Redox-Active Materials in Aqueous Flow Batteries: Current Strategies and Future Perspectives,” SmartMat 4, no. 4 (2023): e1198, https://doi.org/10.1002/smm2.1198.

[45]

E. Pedraza, C. de la Cruz, A. Mavrandonakis, et al., “Unprecedented Aqueous Solubility of TEMPO and Its Application as High Capacity Catholyte for Aqueous Organic Redox Flow Batteries,” Advanced Energy Materials 13 (2023): 2301929, https://doi.org/10.1002/aenm.202301929.

[46]

W. Lee, G. Park, Y. Kim, D. Chang, and Y. Kwon, “Nine Watt - Level Aqueous Organic Redox Flow Battery Stack Using Anthraquinone and Vanadium as Redox Couple,” Chemical Engineering Journal 398, no. May (2020): 125610, https://doi.org/10.1016/j.cej.2020.125610.

[47]

X. Li, P. Gao, Y. Y. Lai, et al., “Symmetry-Breaking Design of an Organic Iron Complex Catholyte for a Long Cyclability Aqueous Organic Redox Flow Battery,” Nature Energy 6, no. 9 (2021): 873-881, https://doi.org/10.1038/s41560-021-00879-6.

[48]

B. Hu, H. Fan, H. Li, M. Ravivarma, and J. Song, “Five-Membered Ring Nitroxide Radical: A New Class of High-Potential, Stable Catholytes for Neutral Aqueous Organic Redox Flow Batteries,” Advanced Functional Materials 31, no. 35 (2021): 1-7, https://doi.org/10.1002/adfm.202102734.

[49]

X. Wang, W. Tang, and K. P. Loh, “Para-Substituted Triphenylamine as a Catholyte for Zinc-Organic Aqueous Redox Flow Batteries,” ACS Applied Energy Materials 4, no. 4 (2021): 3612-3621, https://doi.org/10.1021/acsaem.1c00031.

[50]

B. Liu, C. W. Tang, H. Jiang, G. Jia, and T. Zhao, “Carboxyl-Functionalized TEMPO Catholyte Enabling High-Cycling-Stability and High-Energy-Density Aqueous Organic Redox Flow Batteries,” ACS Sustainable Chemistry & Engineering 9, no. 18 (2021): 6258-6265, https://doi.org/10.1021/acssuschemeng.0c08946.

[51]

Y. Chen, M. Zhou, Y. Xia, et al., “A Stable and High-Capacity Redox Targeting-Based Electrolyte for Aqueous Flow Batteries,” Joule 3, no. 9 (2019): 2255-2267, https://doi.org/10.1016/j.joule.2019.06.007.

[52]

J. Luo, B. Hu, C. Debruler, et al., “Unprecedented Capacity and Stability of Ammonium Ferrocyanide Catholyte in PH Neutral Aqueous Redox Flow Batteries,” Joule 3, no. 1 (2019): 149-163, https://doi.org/10.1016/j.joule.2018.10.010.

[53]

G. Wang, H. Zou, Z. Xu, et al., “Unlocking the Solubility Limit of Ferrocyanide for High Energy Density Redox Flow Batteries,” Materials Today Energy 28 (2022): 101061, https://doi.org/10.1016/j.mtener.2022.101061.

[54]

M. Wang, Y. Meng, Y. Xu, D. Shen, P. Tong, and W. Chen, “An Energetic Aqueous Mn Metal Anode,” ACS Energy Letters 9 (2024): 1381-1388, https://doi.org/10.1021/acsenergylett.4c00103.

[55]

C. Liu, X. Chi, Q. Han, and Y. Liu, “A High Energy Density Aqueous Battery Achieved by Dual Dissolution/Deposition Reactions Separated in Acid-Alkaline Electrolyte,” Advanced Energy Materials 10, no. 12 (2020): 1-7, https://doi.org/10.1002/aenm.201903589.

[56]

Q. Yang, X. Qu, H. Cui, et al., “Rechargeable Aqueous Mn-Metal Battery Enabled by Inorganic-Organic Interfaces,” Angewandte Chemie International Edition 61, no. 35 (2022): e202206471, https://doi.org/10.1002/anie.202206471.

[57]

J. Lei, Y. Yao, Y. Huang, and Y. C. Lu, “A Highly Reversible Low-Cost Aqueous Sulfur-Manganese Redox Flow Battery,” ACS Energy Letters 8, no. 1 (2023): 429-435, https://doi.org/10.1021/acsenergylett.2c02524.

[58]

Y. Liu, M. Nan, Z. Zhao, et al., “Manganese-Based Flow Battery Based on the MnCl2 Electrolyte for Energy Storage,” Chemical Engineering Journal 465, no. March (2023): 142602, https://doi.org/10.1016/j.cej.2023.142602.

[59]

F. Q. Xue, Y. L. Wang, W. H. Wang, and X. D. Wang, “Investigation on the Electrode Process of the Mn(II)/Mn(III) Couple in Redox Flow Battery,” Electrochimica Acta 53, no. 22 (2008): 6636-6642, https://doi.org/10.1016/j.electacta.2008.04.040.

[60]

D. Wang, L. Wang, G. Liang, et al., “A Superior δ-MnO2 Cathode and a Self-Healing Zn-δ-MnO2 Battery,” ACS Nano 13, no. 9 (2019): 10643-10652, https://doi.org/10.1021/acsnano.9b04916.

[61]

S. Wang, Z. Yuan, X. Zhang, et al., “Non-Metal Ion Co-Insertion Chemistry in Aqueous Zn/MnO2 Batteries,” Angewandte Chemie 133, no. 13 (2021): 7132-7136, https://doi.org/10.1002/ange.202017098.

[62]

J. Cao, K. Yu, J. Zhang, et al., “Vanadium-Mediated High Areal Capacity Zinc-Manganese Redox Flow Battery,” ACS Sustainable Chemistry & Engineering 12, no. 16 (2024): 6320-6329, https://doi.org/10.1021/acssuschemeng.4c00195.

[63]

D. Reynard, S. Maye, P. Peljo, V. Chanda, H. H. Girault, and S. Gentil, “Vanadium-Manganese Redox Flow Battery: Study of MnIII Disproportionation in the Presence of Other Metallic Ions,” Chemistry - A European Journal 26, no. 32 (2020): 7250-7257, https://doi.org/10.1002/chem.202000340.

[64]

M. Ding, H. Fu, X. Lou, et al., “A Stable and Energy-Dense Polysulfide/Permanganate Flow Battery,” ACS Nano 17, no. 16 (2023): 16252-16263, https://doi.org/10.1021/acsnano.3c06273.

[65]

J. E. Jang, S. Jayasubramaniyan, S. W. Lee, and H. W. Lee, “A Hexacyanomanganate Negolyte for Aqueous Redox Flow Batteries,” ACS Energy Letters 8, no. 9 (2023): 3702-3709, https://doi.org/10.1021/acsenergylett.3c01293.

[66]

C. Liu, X. Chi, J. Huang, and Y. Liu, “A High-Voltage Rechargeable Alkaline Zn-MnO4-Battery With Enhanced Stability Achieved by Highly Reversible MnO4-/MnO42-Redox Pair,” Materials Today Energy 20 (2021): 100680, https://doi.org/10.1016/j.mtener.2021.100680.

[67]

X. Shen, C. Kellamis, V. Tam, N. Sinclair, J. Wainright, and R. Savinell, “An All-Soluble Fe/Mn-Based Alkaline Redox Flow Battery System,” ACS Applied Materials & Interfaces 16, no. 3 (2024): 18686-18692, https://doi.org/10.1021/acsami.3c15803.

[68]

X. Yu, Y. Song, and A. Tang, “Tailoring Manganese Coordination Environment for a Highly Reversible Zinc-Manganese Flow Battery,” Journal of Power Sources 507, no. May (2021): 230295, https://doi.org/10.1016/j.jpowsour.2021.230295.

[69]

W. Xiang, M. Yang, M. Ding, et al., “Alkaline Zn-Mn Aqueous Flow Batteries With Ultrahigh Voltage and Energy Density,” Energy Storage Materials 61 (2023): 102894, https://doi.org/10.1016/j.ensm.2023.102894.

[70]

G. A. Ahmed, A. Fawzy, and R. M. Hassan, “Spectrophotometric Evidence for the Formation of Short-Lived Hypomanganate(V) and Manganate (VI) Transient Species During the Oxidation of K-Carrageenan by Alkaline Permanganate,” Carbohydrate Research 342, no. 10 (2007): 1382-1386, https://doi.org/10.1016/j.carres.2007.03.022.

[71]

A. N. Colli, P. Peljo, and H. H. Girault, “High Energy Density MnO4-/MnO42- Redox Couple for Alkaline Redox Flow Batteries,” Chemical Communications 52, no. 97 (2016): 14039-14042, https://doi.org/10.1039/c6cc08070g.

RIGHTS & PERMISSIONS

2025 The Author(s). Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/