In Situ Coating Li3PO4 on Li6.5La3Zr1.5Ta0.5O12 Achieving Lithium Dendrites Inhibition and High Chemical Stability

Jun Ma , Ruilin He , Yidong Jiang , Ludan Zhang , Hongli Xu , Hongbo Zeng , Chaoyang Wang , Xiaoxiong Xu , Yonghong Deng , Jun Wang , Shang-Sen Chi

Battery Energy ›› 2025, Vol. 4 ›› Issue (4) : e70009

PDF
Battery Energy ›› 2025, Vol. 4 ›› Issue (4) :e70009 DOI: 10.1002/bte2.70009
RESEARCH ARTICLE

In Situ Coating Li3PO4 on Li6.5La3Zr1.5Ta0.5O12 Achieving Lithium Dendrites Inhibition and High Chemical Stability

Author information +
History +
PDF

Abstract

Solid-state electrolyte (SSE) is a potential way to solve the safety problems of lithium metal batteries (LMBs), and Li6.5La3Zr1.5Ta0.5O12 (LLZTO) is one of the most extensive research SSEs due to its good air stability and wide electrochemical window. However, the residual alkali on LLZTO surface limits its application with polyvinylidene difluoride (PVDF)-contained binders, and the uncontrollable lithium dendrites growing between the grain boundaries of LLZTO particles would lead to rapid capacity fading and potential short circuit risk. Herein, by in situ coating Li3PO4 (LPO) on LLZTO particles (LLZTO@LPO) evenly, the residual alkali on the LLZTO surface is neutralized and the pH value is reduced to 8.84. The modified LLZTO can be mixed with PVDF solution and shows good fluidity without a cross-linking reaction, making the subsequent ceramic coating on the separator feasible. The LLZTO@LPO coating polyethylene (PE) separator can achieve 1400 h (115% increase) stable cycling under 1 mA cm-2 current density in the Li∥Li symmetrical cell and 80% capacity retention after 260 cycles (NCM622-Li coin cell with 3 mAh cm-2 loading). Furthermore, the LLZTO SSE pellets were prepared with the LLZTO@LPO and assembled in coin cell. The critical current density (CCD) result increases from 0.7 to 1.6 mA cm-2 owing to that the LPO coating effectively inhibits the lithium dendrites formation through LLZTO grain boundaries. This work provides a strategy for fabricating the coating layer on LLZTO to improve the stability of LMBs.

Keywords

lithium dendrites / lithium lanthanum zirconate (Li7La3Zr2O12) / lithium metal batteries / lithium phosphate (Li3PO4) / solid-state electrolytes

Cite this article

Download citation ▾
Jun Ma, Ruilin He, Yidong Jiang, Ludan Zhang, Hongli Xu, Hongbo Zeng, Chaoyang Wang, Xiaoxiong Xu, Yonghong Deng, Jun Wang, Shang-Sen Chi. In Situ Coating Li3PO4 on Li6.5La3Zr1.5Ta0.5O12 Achieving Lithium Dendrites Inhibition and High Chemical Stability. Battery Energy, 2025, 4(4): e70009 DOI:10.1002/bte2.70009

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. D. Lim, J. H. Park, H. J. Shin, et al., “A Review of Challenges and Issues Concerning Interfaces for All-Solid-State Batteries,” Energy Storage Materials 25 (2020): 224-250.

[2]

L. Zhang, Q. Zhuang, R. Zheng, et al., “Recent Advances of Li7La3Zr2O12-Based Solid-State Lithium Batteries Towards High Energy Density,” Energy Storage Materials 49 (2022): 299-338.

[3]

L. Xu, J. Li, W. Deng, et al., “Garnet Solid Electrolyte for Advanced All-Solid-State Li Batteries,” Advanced Energy Materials 11, no. 2 (2021): 2000648.

[4]

L. Yang, Z. Lu, Y. Qin, et al., “Interrelated Interfacial Issues Between a Li7La3Zr2O12-Based Garnet Electrolyte and Li Anode in the Solid-State Lithium Battery: A Review,” Journal of Materials Chemistry A 9 (2021): 5952-5979.

[5]

J. Chai, L. Song, Z. Li, Z. Peng, and X. Yao, “Lithium Spreading Layer Consisting of Nickel Particles Enables Stable Cycling of Aluminum Anode in All-Solid-State Battery,” Battery Enenrgy 3, no. 5 (2024): 20240004.

[6]

R. Götz, R. Streng, J. Sterzinger, et al., “All-Solid-State Li-Ion Batteries With Commercial Available Electrolyte: A Feasibility Review,” InfoMat 6 no. 12 (2024): e12627.

[7]

C. Wang, J. Liang, J. T. Kim, and X. Sun, “Prospects of Halide-Based All-Solid-State Batteries: From Material Design to Practical Application,” Science Advances 8, no. 36 (2022): 9516.

[8]

L. Huang, L. Zhang, J. Bi, et al., “An Insight Into Halide Solid-State Electrolytes: Progress and Modification Strategies,” Energy Material Advances 5 (2024): 0092.

[9]

M. S. Nafis, Z. Liang, S. Lee, and C. Ban, “Structural Engineering Developments in Sulfide Solid-State Electrolytes for Lithium and Sodium Solid-State Batteries,” Nano Energy 133 (2025): 110447.

[10]

Y. Wu, Z. Zhang, Q. Zhang, et al., “Industrialization Challenges for Sulfide-Based All Solid State Battery,” Etransportation 22 (2024): 100371.

[11]

J. Wu, X. Wang, Q. Liu, et al., “A synergistic Exploitation to Produce High-Voltage Quasi-Solid-State Lithium Metal Batteries,” Nature Communications 12 (2021): 5746.

[12]

Y. Liu, Q. Zeng, Z. Li, et al., “Recent Development in Topological Polymer Electrolytes for Rechargeable Lithium Batteries,” Advanced Science 10, no. 15 (2023): 2206978.

[13]

X. Zhao, Z. Fu, X. Zhang, et al., “More Is Better: High-Entropy Electrolyte Design in Rechargeable Batteries,” Energy & Environmental Science 17 (2024): 2406-2430.

[14]

T. Krauskopf, R. Dippel, H. Hartmann, et al., “Lithium-Metal Growth Kinetics on LLZO Garnet-Type Solid Electrolytes,” Joule 3, no. 8 (2019): 2030-2049.

[15]

F. Ji, S. Xiao, J. Cheng, et al., “Low-Cost and Facile Synthesis of LAGP Solid State Electrolyte via a Co-Precipitation Method,” Applied Physics Letters 121 (2022): 023904.

[16]

C. Wang, K. Fu, S. P. Kammampata, et al., “Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries,” Chemical Reviews 120, no. 10 (2020): 4257-4300.

[17]

R. Murugan, V. Thangadurai, and W. Weppner, “Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12,” Angewandte Chemie International Edition 46, no. 41 (2007): 7778-7781.

[18]

S. Ramakumar, C. Deviannapoorani, L. Dhivya, L. S. Shankar, and R. Murugan, “Lithium Garnets: Synthesis, Structure, Li+ Conductivity, Li+ Dynamics and Applications,” Progress in Materials Science 88 (2017): 325-411.

[19]

C. A. Geiger, E. Alekseev, B. Lazic, et al., “Crystal Chemistry and Stability of ‘Li7La3Zr2O12’ Garnet: A Fast Lithium-Ion Conductor,” Inorganic Chemistry 50, no. 3 (2011): 1089-1097.

[20]

R. Chen, Q. Li, X. Yu, L. Chen, and H. Li, “Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces,” Chemical Reviews 120, no. 14 (2019): 6820-6877.

[21]

J. Awaka, A. Takashima, K. Kataoka, N. Kijima, Y. Idemoto, and J. Akimoto, “Crystal Structure of Fast Lithium-Ion-Conducting Cubic Li7La3Zr2O12,” Chemistry Letters 40, no. 1 (2011): 60-62.

[22]

X. Xiang, Y. Liu, F. Chen, et al., “Crystal Structure and Lithium Ionic Transport Behavior of Li Site Doped Li7La3Zr2O12,” Journal of the European Ceramic Society 40 (2020): 3065-3071.

[23]

S. Qin, X. Zhu, Y. Jiang, M. Ling, Z. Hu, and J. Zhu, “Growth of Self-Textured Ga3+-Substituted Li7La3Zr2O12 Ceramics by Solid State Reaction and Their Significant Enhancement in Ionic Conductivity,” Applied Physics Letters 112 (2018): 113901.

[24]

J. Ma, Y. Jiang, W. Chen, et al., “A low-cost Al-doped garnet Li7La3Zr2O12 With High Ionic Conductivity for High-Energy Solid-State Lithium Metal Batteries,” Applied Physics Letters 121 (2022): 193901.

[25]

C. Zheng, J. Su, C. Song, et al., “Improvement of Density and Electrochemical Performance of Garnet-Type Li7La3Zr2O12 for Solid-State Lithium Metal Batteries Enabled by W and Ta Co-Doping Strategy,” Materials Today Energy 27 (2022): 101034.

[26]

A. Sharafi, H. M. Meyer, J. Nanda, J. Wolfenstine, and J. Sakamoto, “Characterizing the Li-Li7La3Zr2O12 Interface Stability and Kinetics as a Function of Temperature and Current Density,” Journal of Power Sources 302 (2016): 135-139.

[27]

L. Cheng, W. Chen, M. Kunz, et al., “Effect of Surface Microstructure on Electrochemical Performance of Garnet Solid Electrolytes,” ACS Applied Materials and Interfaces Interfaces 7 (2015): 2073-2081.

[28]

C. L. Tsai, V. Roddatis, C. V. Chandran, et al., “Li7La3Zr2O12 Interface Modification for Li Dendrite Prevention,” ACS Applied Materials & Interfaces 8 (2016): 10617-10626.

[29]

F. Han, A. S. Westover, J. Yue, et al., “High Electronic Conductivity as the Origin of Lithium Dendrite Formation Within Solid Electrolytes,” Nature Energy 4 (2019): 187-196.

[30]

B. Shao, Y. Huang, and F. Han, “Electronic Conductivity of Lithium Solid Electrolytes,” Advanced Energy Materials 13 (2023): 2204098.

[31]

C. Zhu, T. Fuchs, S. A. L. Weber, et al., “Understanding the Evolution of Lithium Dendrites at Li6.25Al0.25La3Zr2O12 Grain Boundaries via Operando Microscopy Techniques,” Nature Communications 14 (2023): 1300.

[32]

H. Liu, Y. Chen, P. H. Chen, et al., “Dendrite Formation in Solid-State Batteries Arising From Lithium Plating and Electrolyte Reduction,” Nature Materials (2025), https://doi.org/10.1038/s41563-024-02094-6.

[33]

H. Sun, A. Celadon, S. G. Cloutier, et al., “Lithium Dendrites in All-Solid-State Batteries: From Formation to Suppression,” Battery Energy 3, no. 3 (2024): 20230062.

[34]

B. Guo, L. Zhang, Y. Tang, and J. Huang, “A Review of All-Solid-State Lithium-Selenium Batteries,” Battery Energy 3, no. 1 (2024): 20230041.

[35]

H. Huo, J. Luo, V. Thangadurai, X. Guo, C. W. Nan, and X. Sun, “Li2CO3: A Critical Issue for Developing Solid Garnet Batteries,” ACS Energy Letters 5, no. 1 (2020): 252-262.

[36]

L. Peng, Z. Lu, L. Zhong, et al., “Enhanced Ionic Conductivity and Interface Compatibility of PVDF-LLZTO Composite Solid Electrolytes by Interfacial Maleic Acid Modification,” Journal of Colloid and Interface Science 613 (2022): 368-375.

[37]

M. Sahal, J. Guo, C. K. Chan, and N. Rolston, “Surface Reduction of Li2CO3 on LLZTO Solid-State Electrolyte Via Scalable Open-Air Plasma Treatment,” Batteries 10 (2024): 249.

[38]

M. Siniscalchi, J. S. Gibson, J. Tufnail, et al., “Removal and Reoccurrence of LLZTO Surface Contaminants Under Glovebox Conditions,” ACS Applied Materials & Interfaces 16 (2024): 27230-27241.

[39]

C. Zhang, J. Yu, Y. Cui, et al., “An Electron-Blocking Interface for Garnet-Based Quasi-Solid-State Lithium-Metal Batteries to Improve Lifespan,” Nature Communications 15 (2024): 5325.

[40]

X. Hu, J. Yu, Y. Wang, et al., “A Lithium Intrusion-Blocking Interfacial Shield for Wide-Pressure-Range Solid Lithium Metal Batteries,” Advanced Materials 36, no. 7 (2024): 2308275.

[41]

H. Huang, J. Jin, C. Zheng, et al., “Bonded Interface Enabled Durable Solid-State Lithium Metal Batteries With Ultra-Low Interfacial Resistance of 0.25 Ω cm2,” Advanced Functional Materials 34, no. 45 (2024): 2047619.

[42]

L. Wang, Y. Lu, Z. Zheng, et al., “In Situ Construction of a Lithiophilic and Electronically Insulating Multifunctional Hybrid Layer Based on the Principle of Hydrolysis for a Stable Garnet/Li Interface,” Advanced Functional Materials 34 (2024): 2402971.

[43]

C. Zheng, Y. Lu, Q. Chang, et al., “High-Performance Garnet-Type Solid-State Lithium Metal Batteries Enabled by Scalable Elastic and Li+-Conducting Interlayer,” Advanced Functional Material 33, no. 33 (2023): 2302729.

[44]

S. S. Chi, Y. Liu, N. Zhao, et al., “Solid Polymer Electrolyte Soft Interface Layer With 3D Lithium Anode for All-Solid-State Lithium Batteries,” Energy Storage Materials 17 (2019): 309-316.

[45]

Y. Kai, H. Zheng, J. Ma, et al., “High-Performance Lithium Metal Batteries Enabled by a Nano-Sized Garnet,” Chemical Engineering Journal 480 (2024): 148038.

[46]

Y. Gao, C. Wang, H. Wang, et al., “Polyurethane/LLZTO Solid Electrolyte With Excellent Mechanical Strength and Electrochemical Property for Advanced Lithium Metal Battery,” Chemical Engineering Journal 474 (2023): 145446.

[47]

J. Jiang, Y. Ou, S. Lu, et al., “In-Situ Construction of Li-Mg/LiF Conductive Layer to Achieve an Intimate Lithium-Garnet Interface for All-Solid-State Li Metal Battery,” Energy Storage Materials 50 (2022): 810-818.

[48]

X. Yi, Y. Guo, S. Chi, et al., “Surface Li2CO3 Mediated Phosphorization Enables Compatible Interfaces of Composite Polymer Electrolyte for Solid-State Lithium Batteries,” Advanced Functional Materials 33 (2023): 2303574.

[49]

J. Cheng, X. Zhou, H. Zhang, et al., “From Blocker to Booster: Harnessing Garnet Surface Chemistry for Advanced Solid-State Electrolytes,” Nano Research 18 (2025): 94906992.

[50]

M. Donzelli, T. Ferber, V. Vanita, et al., “On the Surface Modification of LLZTO With LiF via a Gas-Phase Approach and the Characterization of the Interfaces of LiF With LLZTO as Well as PEO+LITFSI,” Materials 15 (2022): 6900.

[51]

X. Hu, Y. Wang, W. Guo, et al., “Garnet-Based Solid Lithium Metal Batteries With Ultralong Lifespan Enabled by Solvent-Free Trifluoroacetic Acid-Induced Interfacial Engineering,” Journal Materials Chemistry A 12, no. 23 (2024): 13830.

[52]

L. Hu, Q. Duan, Y. Li, et al., “Turning Waste Into Wealth: Li2CO3 Impurity Conversion Into Ionic Conductive and Lithiophlic Interphase for Garnet-Based Solid-State Lithium Batteries,” Journal of Power Sources 619 (2024): 235220.

[53]

C. Zheng, Y. Lu, J. Su, et al., “Grain Boundary Engineering Enabled High-Performance Garnet-Type Electrolyte for Lithium Dendrite Free Lithium Metal Batteries,” Small Method 6, no. 9 (2022): 2200667.

[54]

C. Zheng, Y. Ruan, J. Su, et al., “Grain Boundary Modification in Garnet Electrolyte to Suppress Lithium Dendrite Growth,” Chemical Engineering Journal 441 (2021): 128508.

[55]

S. Deng, H. Zhu, Z. Zheng, et al., “Synergistically Engineering Grains and Grain Boundaries Toward Li Dendrite-Free Li7La3Zr2O12,” Nano Letters 24, no. 32 (2024): 9801-9807.

[56]

Z. Lin, Y. Li, P. Ding, et al., “Polymer Electrolytes for Compatibility with NCM Cathodes in Solid-State Lithium Metal Batteries: Challenges and Strategies,” Battery Energy (2025): e20240063.

[57]

Z. Liu, S. Zhang, Q. Zhou, et al., “Insights Into Quasi Solid-State Polymer Electrolyte: The Influence of Succinonitrile on Polyvinylene Carbonate Electrolyte in View of Electrochemical Applications,” Battery Energy 2, no. 3 (2023): 20220049.

[58]

J. Kumchompoo, J. T. Lee, and C. C. Li, “How Dispersed LLZTO Enhances Ionic Conductivity in LiFePO4 Composite Cathodes for Solid-State Batteries,” Journal of Energy Storage 102 (2024): 114215.

[59]

H. Luo, H. Chen, X. Luo, et al., “Effects of In Situ-Converted LPO Coating on Electrochemical Performance of MOF-Assisted LiNi0.5Mn1.5O4 Cathode Materials for Lithium-Ion Batteries,” Journal of Materials Science 33 (2022): 6872-6887.

[60]

X. Liu, Q. Weng, T. Liu, Z. Tang, and H. Tang, “A Li3PO4 Coating Strategy to Enhance the Li-Ion Transport Properties of Li2ZnTi3O8 Anode Material for Lithium-Ion Battery,” Electrochimica Acta 447 (2023): 142151.

[61]

D. Chen, F. Zheng, L. Li, et al., “Effect of Li3PO4 Coating of Layered Lithium-Rich Oxide on Electrochemical Performance,” Journal of Power Sources 341, no. 15 (2017): 147-155.

[62]

B. Xu, W. Li, H. Duan, et al., “LPO-Added Garnet-Type Li6.5La3Zr1.5Ta0.5O12 for Li-Dendrite Suppression,” Journal of Power Sources 345, no. 30 (2017): 68-73.

RIGHTS & PERMISSIONS

2025 The Authors. Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/