Electrochemical Stability and Ionic Conductivity of AlF3 Containing Lithium Borate Glasses: Fluorine Effect, Strength or Weakness?

Xinhao Yang , Francisco Muñoz , Pamela Vargas , Teresa Palomar , Nataly C. Rosero-Navarro

Battery Energy ›› 2025, Vol. 4 ›› Issue (4) : e70007

PDF
Battery Energy ›› 2025, Vol. 4 ›› Issue (4) :e70007 DOI: 10.1002/bte2.70007
RESEARCH ARTICLE

Electrochemical Stability and Ionic Conductivity of AlF3 Containing Lithium Borate Glasses: Fluorine Effect, Strength or Weakness?

Author information +
History +
PDF

Abstract

Fluorides are commonly regarded as interfacial additives that enhance the electrochemical stability of solid-state battery electrolytes. In this study, we synthesized lithium borate glassy solid electrolytes and investigated the effect of adding aluminum fluoride (AlF3) on its stability against lithium metal electrodes. Samples maintained their amorphous nature, with up to 9.20 wt.% of fluorine in the glass. Lithium borate glasses, with and without AlF3, demonstrated an excellent electrochemical performance, sustaining a stable lithium voltage profile at current densities from 0.01 to 1 mA cm-2 at 160℃. Notably, the lithium borate glass with the highest lithium ion content achieved the highest relative ionic conductivity and cycled stably for up to 500 h at current densities of 1 mA cm-2 at 160℃ in symmetric LiǀglassǀLi cells. However, the addition of AlF3 to lithium borate glass significantly compromises its electrochemical stability. In long-term symmetrical cell tests, the AlF3-containing lithium borate glass exhibited short-circuiting under 0.3 mA cm-2, revealing unexpectedly poor stability. These findings offer valuable insights for evaluating the impact of fluorine incorporation on the performance of solid-state battery electrolytes.

Keywords

electrochemical stability / fluoride additives / glassy electrolytes / lithium borate glass electrolytes / lithium metal anodes / solid-state batteries

Cite this article

Download citation ▾
Xinhao Yang, Francisco Muñoz, Pamela Vargas, Teresa Palomar, Nataly C. Rosero-Navarro. Electrochemical Stability and Ionic Conductivity of AlF3 Containing Lithium Borate Glasses: Fluorine Effect, Strength or Weakness?. Battery Energy, 2025, 4(4): e70007 DOI:10.1002/bte2.70007

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, and C. Chen, “Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery,” Journal of Power Sources 208 (2012): 210-224, https://doi.org/10.1016/j.jpowsour.2012.02.038.

[2]

L. Jia, J. Zhu, X. Zhang, B. Guo, Y. Du, and X. Zhuang, “Li-Solid Electrolyte Interfaces/Interphases in All-Solid-State Li Batteries,” Electrochemical Energy Reviews 7, no. 1 (2024): 12, https://doi.org/10.1007/s41918-024-00212-1.

[3]

J. G. Kim, B. Son, S. Mukherjee, et al., “A Review of Lithium and Non-Lithium Based Solid State Batteries,” Journal of Power Sources 282 (2015): 299-322, https://doi.org/10.1016/j.jpowsour.2015.02.054.

[4]

H. Yang and N. Wu, “Ionic Conductivity and Ion Transport Mechanisms of Solid-State Lithium-Ion Battery Electrolytes: A Review,” Energy Science & Engineering 10, no. 5 (2022): 1643-1671, https://doi.org/10.1002/ese3.1163.

[5]

P. Albertus, V. Anandan, C. Ban, et al., “Challenges for and Pathways Toward Li-Metal-Based All-Solid-State Batteries,” ACS Energy Letters 6, no. 4 (2021): 1399-1404, https://doi.org/10.1021/acsenergylett.1c00445.

[6]

X. Miao, S. Guan, C. Ma, L. Li, and C. W. Nan, “Role of Interfaces in Solid-State Batteries,” Advanced Materials 35, no. 50 (2023): e2206402, https://doi.org/10.1002/adma.202206402.

[7]

N. C. Rosero-Navarro, “Application of Sol-Gel Processes to Materials and Interfaces in Oxide-Based All-Solid-State Batteries,” Journal of Sol-Gel Science and Technology 103, no. 2 (2022): 680-689, https://doi.org/10.1007/s10971-022-05880-3.

[8]

W. D. Richards, L. J. Miara, Y. Wang, J. C. Kim, and G. Ceder, “Interface Stability in Solid-State Batteries,” Chemistry of Materials 28, no. 1 (2015): 266-273, https://doi.org/10.1021/acs.chemmater.5b04082.

[9]

Y. Chen, Y. Luo, H. Zhang, C. Qu, H. Zhang, and X. Li, “The Challenge of Lithium Metal Anodes for Practical Applications,” Small Methods 3, no. 7 (2019): 1800551, https://doi.org/10.1002/smtd.201800551.

[10]

Y. Zhu, X. He, and Y. Mo, “Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights From Thermodynamic Analyses Based on First-Principles Calculations,” ACS Applied Materials & Interfaces 7, no. 42 (2015): 23685-23693, https://doi.org/10.1021/acsami.5b07517.

[11]

Z. Zhang and W. Q. Han, “From Liquid to Solid-State Lithium Metal Batteries: Fundamental Issues and Recent Developments,” Nano-Micro Letters 16, no. 1 (2023): 24, https://doi.org/10.1007/s40820-023-01234-y.

[12]

F. Zhao, Q. Sun, C. Yu, et al., “Ultrastable Anode Interface Achieved by Fluorinating Electrolytes for All-Solid-State Li Metal Batteries,” ACS Energy Letters 5, no. 4 (2020): 1035-1043, https://doi.org/10.1021/acsenergylett.0c00207.

[13]

X. Ji, S. Hou, P. Wang, et al., “Solid-State Electrolyte Design for Lithium Dendrite Suppression,” Advanced Materials 32, no. 46 (2020): e2002741, https://doi.org/10.1002/adma.202002741.

[14]

H. Duan, W. P. Chen, M. Fan, et al., “Building an Air Stable and Lithium Deposition Regulable Garnet Interface From Moderate-Temperature Conversion Chemistry,” Angewandte Chemie International Edition 59, no. 29 (2020): 12069-12075, https://doi.org/10.1002/anie.202003177.

[15]

M. Cai, J. Jin, T. Xiu, Z. Song, M. E. Badding, and Z. Wen, “In-Situ Constructed Lithium-Salt Lithiophilic Layer Inducing Bi-Functional Interphase for Stable LLZO/Li Interface,” Energy Storage Materials 47 (2022): 61-69, https://doi.org/10.1016/j.ensm.2022.01.046.

[16]

Z. A. Grady, C. J. Wilkinson, C. A. Randall, and J. C. Mauro, “Emerging Role of Non-Crystalline Electrolytes in Solid-State Battery Research,” Frontiers in Energy Research 8 (2020): 00218, https://doi.org/10.3389/fenrg.2020.00218.

[17]

V. Dua, S. K. Arya, and K. Singh, “Review on Transition Metals Containing Lithium Borate Glasses Properties, Applications and Perspectives,” Journal of Materials Science 58, no. 21 (2023): 8678-8699, https://doi.org/10.1007/s10853-023-08567-4.

[18]

C. Lee, “Characterizations of a New Lithium Ion Conducting Li2O-SeO2-B2O3 Glass Electrolyte,” Solid State Ionics 149, no. 1-2 (2002): 59-65, https://doi.org/10.1016/s0167-2738(02)00137-6.

[19]

J. Liang, J. Luo, Q. Sun, X. Yang, R. Li, and X. Sun, “Recent Progress on Solid-State Hybrid Electrolytes for Solid-State Lithium Batteries,” Energy Storage Materials 21 (2019): 308-334, https://doi.org/10.1016/j.ensm.2019.06.021.

[20]

T. To, I. Ladjani, P. Houizot, et al., “Mechanical and Electrochemical Properties of Lithium Aluminoborate Glasses,” Glass Europe 2 (2024): 27-44, https://doi.org/10.52825/glass-europe.v2i.1382.

[21]

M. K. Aslam, Y. Niu, T. Hussain, et al., “How to Avoid Dendrite Formation in Metal Batteries: Innovative Strategies for Dendrite Suppression,” Nano Energy 86 (2021): 106142, https://doi.org/10.1016/j.nanoen.2021.106142.

[22]

C. Singer, H. C. Töpper, T. Kutsch, R. Schuster, R. Koerver, and R. Daub, “Hydrolysis of Argyrodite Sulfide-Based Separator Sheets for Industrial All-Solid-State Battery Production,” ACS Applied Materials & Interfaces 14, no. 21 (2022): 24245-24254, https://doi.org/10.1021/acsami.2c01099.

[23]

G. Lelong, L. Cormier, L. Hennet, et al., “Lithium Borates From the Glass to the Melt: A Temperature-Induced Structural Transformation Viewed From the Boron and Oxygen Atoms,” Inorganic Chemistry 60, no. 2 (2021): 798-806, https://doi.org/10.1021/acs.inorgchem.0c02844.

[24]

D. Massiot, F. Fayon, M. Capron, et al., “Modelling One- and Two-Dimensional Solid-State NMR Spectra,” Magnetic Resonance in Chemistry 40, no. 1 (2001): 70-76, https://doi.org/10.1002/mrc.984.

[25]

M. Murakami, H. Yamashige, H. Arai, Y. Uchimoto, and Z. Ogumi, “Direct Evidence of LiF Formation at Electrode/Electrolyte Interface by 7Li and 19F Double-Resonance Solid-State NMR Spectroscopy,” Electrochemical and Solid-State Letters 14, no. 9 (2011): A134, https://doi.org/10.1149/1.3609260.

[26]

P. J. Chupas, D. R. Corbin, V. N. M. Rao, J. C. Hanson, and C. P. Grey, “A Combined Solid-State NMR and Diffraction Study of the Structures and Acidity of Fluorinated Aluminas: Implications for Catalysis,” Journal of Physical Chemistry B 107, no. 33 (2003): 8327-8336, https://doi.org/10.1021/jp0300905.

[27]

P. Dzwonkowski, M. Eddrief, C. Julien, and M. Balkanski, “Structure and Ionic Conductivity of Lithio-Borate Thin Films,” MRS Proceedings 210 (2011): 633, https://doi.org/10.1557/proc-210-633.

[28]

V. Montouillout, H. Fan, L. del Campo, et al., “Ionic Conductivity of Lithium Borate Glasses and Local Structure Probed by High Resolution Solid-Sate Nmr,” Journal of Non-Crystalline Solids 484 (2018): 57-64, https://doi.org/10.1016/j.jnoncrysol.2018.01.020.

[29]

P. Kluvánek, R. Klement, and M. Karáčoň, “Investigation of the Conductivity of the Lithium Borosilicate Glass System,” Journal of Non-Crystalline Solids 353, no. 18-21 (2007): 2004-2007, https://doi.org/10.1016/j.jnoncrysol.2007.01.064.

[30]

R. K. Hona, M. Guinn, U. S. Phuyal, S. Sanchez, and G. S. Dhaliwal, “Alkali Ionic Conductivity in Inorganic Glassy Electrolytes,” Journal of Materials Science and Chemical Engineering 11, no. 07 (2023): 31-72, https://doi.org/10.4236/msce.2023.117004.

[31]

L. Qian, B. Singh, Z. Yu, et al., “Unlocking Lithium Ion Conduction in Lithium Metal Fluorides,” Matter 7, no. 10 (2024): 3587-3607, https://doi.org/10.1016/j.matt.2024.06.027.

[32]

H. Zeng, K. Yu, J. Li, et al., “Beyond LIF: Tailoring Li2O-Dominated Solid Electrolyte Interphase for Stable Lithium Metal Batteries,” ACS Nano 18, no. 3 (2024): 1969-1981, https://doi.org/10.1021/acsnano.3c07038.

[33]

T. L. Cottrell, The Strengths of Chemical Bonds (Butterworths Scientific Publications, 1954).

[34]

T. Fang, F. Muñoz, P. Vargas, K. Tadanaga, and N. C. Rosero-Navarro, “Electrochemical Performance Study of ALF₃-Containing Lithium Phosphate Glass Electrolytes,” Journal of Power Sources 625 (2025): 235640, https://doi.org/10.1016/j.jpowsour.2024.235640.

RIGHTS & PERMISSIONS

2025 The Author(s). Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/