Enhancing Temperature-Optimized Ionic Liquid Electrolytes for High-Voltage, High-Energy Supercapacitors Utilizing Date Stone-Derived Carbon in Coin Cell Configuration

Abubakar Dahiru Shuaibu , Abdulmajid A. Mirghni , Syed Shaheen Shah , Yuda Prima Hardianto , Atif Saeed Alzahrani , Md. Abdul Aziz

Battery Energy ›› 2025, Vol. 4 ›› Issue (4) : e70005

PDF
Battery Energy ›› 2025, Vol. 4 ›› Issue (4) :e70005 DOI: 10.1002/bte2.70005
RESEARCH ARTICLE

Enhancing Temperature-Optimized Ionic Liquid Electrolytes for High-Voltage, High-Energy Supercapacitors Utilizing Date Stone-Derived Carbon in Coin Cell Configuration

Author information +
History +
PDF

Abstract

This study investigates the advancement of coin cell supercapacitors (SCs) for sustainable, high-performance energy storage by employing biomass-derived date stone activated carbon with various ionic liquid (IL) electrolytes at different temperatures. The research reveals that SCs demonstrate both pseudocapacitive and electrochemical double-layer characteristics. Among the tested ILs, 1-Butyl-3-methylimidazolium trifluoromethanesulfonate (BMIMOTf) emerges as the most effective, achieving an impressive energy density of 129.9 Wh kg-1, a power density of 403.8 W kg-1, and a specific capacitance of 103.9 F g-1 at 0.5 A g-1. After 5000 cycles, the supercapacitor utilizing BMIMOTf maintains 97.3% of its initial capacitance and exhibits a Coulombic efficiency approaching 100%. Additionally, temperature-dependent analyses from room temperature to 50℃ reveal that higher temperatures boost the electrochemical performance of the SC, attributed to improved ionic conductivity. This research offers a more comprehensive understanding of how materials and electrolytes interact, emphasizing the capacity of BMIMOTf to foster innovations in eco-friendly energy storage solutions.

Keywords

biomass-derived carbon / coin cell / energy density / energy storage / ionic liquid / supercapacitor

Cite this article

Download citation ▾
Abubakar Dahiru Shuaibu, Abdulmajid A. Mirghni, Syed Shaheen Shah, Yuda Prima Hardianto, Atif Saeed Alzahrani, Md. Abdul Aziz. Enhancing Temperature-Optimized Ionic Liquid Electrolytes for High-Voltage, High-Energy Supercapacitors Utilizing Date Stone-Derived Carbon in Coin Cell Configuration. Battery Energy, 2025, 4(4): e70005 DOI:10.1002/bte2.70005

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. T. Das, E. B. T, S. Dutta, et al., “Recent Trend of CeO2-Based Nanocomposites Electrode in Supercapacitor: A Review on Energy Storage Applications,” Journal of Energy Storage 50 (2022): 104643, https://doi.org/10.1016/j.est.2022.104643.

[2]

H. T. Das, S. Saravanya, and P. Elumalai, “Disposed Dry Cells as Sustainable Source for Generation of Few Layers of Graphene and Manganese Oxide for Solid-State Symmetric and Asymmetric Supercapacitor Applications,” ChemistrySelect 3 (2018): 13275-13283, https://doi.org/10.1002/slct.201803034.

[3]

T. E. Balaji, H. Tanaya Das, and T. Maiyalagan, “Recent Trends in Bimetallic Oxides and Their Composites as Electrode Materials for Supercapacitor Applications,” ChemElectroChem 8 (2021): 1723-1746, https://doi.org/10.1002/celc.202100098.

[4]

Y. A. Kumar, H. T. Das, P. R. Guddeti, et al., “Self-Supported Co3O4@Mo-Co3O4 Needle-Like Nanosheet Heterostructured Architectures of Battery-Type Electrodes for High-Performance Asymmetric Supercapacitors,” Nanomaterials 12 (2022): 2330, https://doi.org/10.3390/nano12142330.

[5]

S. Shaheen Shah, M. A. Aziz, A.-R. Al-Betar, and W. Mahfoz, “Electrodeposition of Polyaniline on High Electroactive Indium Tin Oxide Nanoparticles-Modified Fluorine Doped Tin Oxide Electrode for Fabrication of High-Performance Hybrid Supercapacitor,” Arabian Journal of Chemistry 15 (2022): 104058, https://doi.org/10.1016/j.arabjc.2022.104058.

[6]

S. S. Shah, S. M. A. Nayem, N. Sultana, A. J. S. Ahammad, and M. A. Aziz, “Preparation of Sulfur-Doped Carbon for Supercapacitor Applications: A Review,” Chemsuschem 15 (2022): e202101282, https://doi.org/10.1002/cssc.202101282.

[7]

M. Ashraf, S. S. Shah, I. Khan, et al., “A High-Performance Asymmetric Supercapacitor Based on Tungsten Oxide Nanoplates and Highly Reduced Graphene Oxide Electrodes,” Chemistry - A European Journal 27 (2021): 6973-6984, https://doi.org/10.1002/chem.202005156.

[8]

S. S. Shah, H. T. Das, H. R. Barai, and M. A. Aziz, “Boosting the Electrochemical Performance of Polyaniline by One-Step Electrochemical Deposition on Nickel Foam for High-Performance Asymmetric Supercapacitor,” Polymers 14 (2022): 270, https://doi.org/10.3390/polym14020270.

[9]

T. Islam, M. M. Hasan, S. S. Shah, et al., “High Yield Activated Porous Coal Carbon Nanosheets From Boropukuria Coal Mine as Supercapacitor Material: Investigation of the Charge Storing Mechanism at the Interfacial Region,” Journal of Energy Storage 32 (2020): 101908, https://doi.org/10.1016/j.est.2020.101908.

[10]

M. M. Faisal, S. R. Ali, S. S. Shah, et al., “Redox-Active Anomalous Electrochemical Performance of Mesoporous Nickel Manganese Sulfide Nanomaterial as an Anode Material for Supercapattery Devices,” Ceramics International 48 (2022): 28565-28577, https://doi.org/10.1016/j.ceramint.2022.06.170.

[11]

A. Helal, S. Shaheen Shah, M. Usman, M. Y. Khan, M. A. Aziz, and M. Mizanur Rahman, “Potential Applications of Nickel-Based Metal-Organic Frameworks and Their Derivatives,” Chemical Record 22 (2022): e202200055, https://doi.org/10.1002/tcr.202200055.

[12]

H. T. Das, S. Dutta, T. E. Balaji, et al., “Recent Trends in Carbon Nanotube Electrodes for Flexible Supercapacitors: A Review of Smart Energy Storage Device Assembly and Performance,” Chemosensors 10 (2022): 223, https://doi.org/10.3390/chemosensors10060223.

[13]

S. M. Abu Nayem, S. Shaheen Shah, N. Sultana, M. Abdul Aziz, and A. J. Saleh Ahammad, “Electrochemical Sensing Platforms of Dihydroxybenzene: Part 2 - Nanomaterials Excluding Carbon Nanotubes and Graphene,” Chemical Record 21 (2021): 1073-1097, https://doi.org/10.1002/tcr.202100044.

[14]

M. Vijayakumar, R. Santhosh, J. Adduru, T. N. Rao, and M. Karthik, “Activated Carbon Fibres as High Performance Supercapacitor Electrodes With Commercial Level Mass Loading,” Carbon 140 (2018): 465-476, https://doi.org/10.1016/j.carbon.2018.08.052.

[15]

H. T. Das, K. Mahendraprabhu, T. Maiyalagan, and P. Elumalai, “Performance of Solid-State Hybrid Energy-Storage Device Using Reduced Graphene-Oxide Anchored Sol-Gel Derived Ni/NiO Nanocomposite,” Scientific Reports 7 (2017): 15342, https://doi.org/10.1038/s41598-017-15444-z.

[16]

A. D. Shuaibu, S. S. Shah, A. S. Alzahrani, and M. A. Aziz, “Development and Assessment of an Innovative Gel Electrolyte Using Polyvinyl Alcohol, Lithium Sulfate, and 1-Butyl-3-Methylimidazolium Trifluoromethanesulfonate for Advanced Supercapacitor Performance,” Journal of Energy Storage 92 (2024): 112040, https://doi.org/10.1016/j.est.2024.112040.

[17]

H. Lu and X. S. Zhao, “Biomass-Derived Carbon Electrode Materials for Supercapacitors,” Sustainable Energy & Fuels 1 (2017): 1265-1281, https://doi.org/10.1039/C7SE00099E.

[18]

Z. Bian, Y. Wang, B. Zhu, et al., “Converting Hippophae rhamnoides Fruit Extraction Residue Into Porous Carbons With Ultra-High Surface Area for Superior-Performance Supercapacitors,” Journal of Energy Storage 98 (2024): 113058, https://doi.org/10.1016/j.est.2024.113058.

[19]

J. Zhang, H. Chen, Z. Ma, et al., “A Lignin Dissolution-Precipitation Strategy for Porous Biomass Carbon Materials Derived From Cherry Stones With Excellent Capacitance,” Journal of Alloys and Compounds 832 (2020): 155029, https://doi.org/10.1016/j.jallcom.2020.155029.

[20]

A. Dahiru Shuaibu, A. Saeed Alzahrani, and M. A. Aziz, “High-Performance Supercapacitors Enabled by Highly-Porous Date Stone-Derived Activated Carbon and Organic Redox Gel Electrolyte,” Asian Journal of Organic Chemistry 12 (2023): e202300050, https://doi.org/10.1002/ajoc.202300050.

[21]

W. Mahfoz, S. S. Shah, M. A. Aziz, and A.-R. Al-Betar, “Fabrication of High-Performance Supercapacitor Using Date Leaves-Derived Submicron/Nanocarbon,” Journal of Saudi Chemical Society 26 (2022): 101570, https://doi.org/10.1016/j.jscs.2022.101570.

[22]

S. S. Shah, E. Cevik, M. A. Aziz, T. F. Qahtan, A. Bozkurt, and Z. H. Yamani, “Jute Sticks Derived and Commercially Available Activated Carbons for Symmetric Supercapacitors With Bio-Electrolyte: A Comparative Study,” Synthetic Metals 277 (2021): 116765, https://doi.org/10.1016/j.synthmet.2021.116765.

[23]

A. Aziz, S. S. Shah, and A. Kashem, “Preparation and Utilization of Jute-Derived Carbon: A Short Review,” Chemical Record 20 (2020): 1074-1098, https://doi.org/10.1002/tcr.202000071.

[24]

S. S. Shah, H. Yang, M. Ashraf, M. A. A. Qasem, A. S. Hakeem, and M. A. Aziz, “Preparation of Highly Stable and Electrochemically Active Three-Dimensional Interconnected Graphene Frameworks From Jute Sticks,” Chemistry - An Asian Journal 17 (2022): e202200567, https://doi.org/10.1002/asia.202200567.

[25]

S. S. Shah, M. N. Shaikh, M. Y. Khan, M. A. Alfasane, M. M. Rahman, and M. A. Aziz, “Present Status and Future Prospects of Jute in Nanotechnology: A Review,” Chemical Record 21 (2021): 1631-1665, https://doi.org/10.1002/tcr.202100135.

[26]

S. S. Shah, M. A. Aziz, E. Cevik, et al., “Sulfur Nano-Confinement in Hierarchically Porous Jute Derived Activated Carbon Towards High-Performance Supercapacitor: Experimental and Theoretical Insights,” Journal of Energy Storage 56 (2022): 105944, https://doi.org/10.1016/j.est.2022.105944.

[27]

A. J. S. Ahammad, N. Odhikari, S. S. Shah, et al., “Porous Tal Palm Carbon Nanosheets: Preparation, Characterization and Application for the Simultaneous Determination of Dopamine and Uric Acid,” Nanoscale Advances 1 (2019): 613-626, https://doi.org/10.1039/C8NA00090E.

[28]

N. C. Deb Nath, S. S. Shah, M. A. A. Qasem, M. H. Zahir, and M. A. Aziz, “Defective Carbon Nanosheets Derived From Syzygium cumini Leaves for Electrochemical Energy-Storage,” ChemistrySelect 4 (2019): 9079-9083, https://doi.org/10.1002/slct.201900891.

[29]

A. K. Mohamedkhair, M. A. Aziz, S. S. Shah, et al., “Effect of an Activating Agent on the Physicochemical Properties and Supercapacitor Performance of Naturally Nitrogen-Enriched Carbon Derived From Albizia Procera Leaves,” Arabian Journal of Chemistry 13 (2020): 6161-6173, https://doi.org/10.1016/j.arabjc.2020.05.017.

[30]

H. Sun, L. Cao, and L. Lu, “Bacteria Promoted Hierarchical Carbon Materials for High-Performance Supercapacitor,” Energy & Environmental Science 5 (2012): 6206-6213, https://doi.org/10.1039/C2EE03407G.

[31]

I. I. Gurten Inal and Z. Aktas, “Enhancing the Performance of Activated Carbon Based Scalable Supercapacitors by Heat Treatment,” Applied Surface Science 514 (2020): 145895, https://doi.org/10.1016/j.apsusc.2020.145895.

[32]

S. S. Shah, F. Niaz, M. A. Ehsan, et al., “Advanced Strategies in Electrode Engineering and Nanomaterial Modifications for Supercapacitor Performance Enhancement: A Comprehensive Review,” Journal of Energy Storage 79 (2024): 110152, https://doi.org/10.1016/j.est.2023.110152.

[33]

A. Asghar, W. A. Ghaly, M. Y. Awaji, et al., “Review—Recent Progress on MOFs-Based Electrode Materials for Supercapacitor,” Journal of the Electrochemical Society 171 (2024): 030526, https://doi.org/10.1149/1945-7111/ad3394.

[34]

D. Kopiec, P. S. Wrobel, U. Szeluga, and K. Kierzek, “Facile Method of Preparation of Carbon Nanotubes Based Aerogels as Cathodes for Lithium-Oxygen Cells,” Journal of Power Sources 604 (2024): 234501, https://doi.org/10.1016/j.jpowsour.2024.234501.

[35]

P. K. Panda, A. Grigoriev, Y. K. Mishra, and R. Ahuja, “Progress in Supercapacitors: Roles of Two Dimensional Nanotubular Materials,” Nanoscale Advances 2 (2020): 70-108, https://doi.org/10.1039/c9na00307j.

[36]

C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, and J. Zhang, “A Review of Electrolyte Materials and Compositions for Electrochemical Supercapacitors,” Chemical Society Reviews 44 (2015): 7484-7539, https://doi.org/10.1039/C5CS00303B.

[37]

B. Pal, S. Yang, S. Ramesh, V. Thangadurai, and R. Jose, “Electrolyte Selection for Supercapacitive Devices: A Critical Review,” Nanoscale Advances 1 (2019): 3807-3835, https://doi.org/10.1039/C9NA00374F.

[38]

C. Ma, L. Tang, H. Cheng, Z. Li, W. Li, and G. He, “Biochar for Supercapacitor Electrodes: Mechanisms in Aqueous Electrolytes,” Battery Energy 3 (2024): 20230058, https://doi.org/10.1002/bte2.20230058.

[39]

S. Wang, W. Deng, Z. Geng, et al., “Significantly Raising Tetracyanoquinodimethane Electrode Performance in Zinc-Ion Battery at Low Temperatures by Eliminating Impurities,” Battery Energy 2 (2023): 20220050, https://doi.org/10.1002/bte2.20220050.

[40]

A. D. Shuaibu, S. S. Shah, A. S. Alzahrani, and M. A. Aziz, “Advancing Gel Polymer Electrolytes for Next-Generation High-Performance Solid-State Supercapacitors: A Comprehensive Review,” Journal of Energy Storage 107 (2025): 114851, https://doi.org/10.1016/j.est.2024.114851.

[41]

S. S. Shah and M. A. Aziz, “Agricultural Product-Derived Carbon for Energy, Sensing, and Environmental Applications: A Mini-Review,” Bangladesh Journal of Plant Taxonomy 27 (2020): 467-478, https://doi.org/10.3329/bjpt.v27i2.50686.

[42]

D. P. Dubal, N. R. Chodankar, D.-H. Kim, and P. Gomez-Romero, “Towards Flexible Solid-State Supercapacitors for Smart and Wearable Electronics,” Chemical Society Reviews 47 (2018): 2065-2129, https://doi.org/10.1039/C7CS00505A.

[43]

X. Lu, M. Yu, G. Wang, Y. Tong, and Y. Li, “Flexible Solid-State Supercapacitors: Design, Fabrication and Applications,” Energy & Environmental Science 7 (2014): 2160-2181, https://doi.org/10.1039/C4EE00960F.

[44]

S. S. Shah, M. A. Aziz, P. I. Rasool, et al., “Electrochemical Synergy and Future Prospects: Advancements and Challenges in MXene and MOFs Composites for Hybrid Supercapacitors,” Sustainable Materials and Technologies 39 (2024): e00814, https://doi.org/10.1016/j.susmat.2023.e00814.

[45]

K. Fic, G. Lota, M. Meller, and E. Frackowiak, “Novel Insight Into Neutral Medium as Electrolyte for High-Voltage Supercapacitors,” Energy & Environmental Science 5 (2012): 5842-5850, https://doi.org/10.1039/C1EE02262H.

[46]

F. Béguin, V. Presser, A. Balducci, and E. Frackowiak, “Supercapacitors: Carbons and Electrolytes for Advanced Supercapacitors,” Advanced Materials 26 (2014): 2283, https://doi.org/10.1002/adma.201470093.

[47]

H. Zhong, F. Xu, Z. Li, R. Fu, and D. Wu, “High-Energy Supercapacitors Based on Hierarchical Porous Carbon With an Ultrahigh Ion-Accessible Surface Area in Ionic Liquid Electrolytes,” Nanoscale 5 (2013): 4678-4682, https://doi.org/10.1039/C3NR00738C.

[48]

A. Brandt, S. Pohlmann, A. Varzi, A. Balducci, and S. Passerini, “Ionic Liquids in Supercapacitors,” MRS Bulletin 38 (2013): 554-559, https://doi.org/10.1557/mrs.2013.151.

[49]

S. S. Shah, M. A. Aziz, M. Ali, A. S. Hakeem, and Z. H. Yamani, “Advanced High-Energy All-Solid-State Hybrid Supercapacitor With Nickel-Cobalt-Layered Double Hydroxide Nanoflowers Supported on Jute Stick-Derived Activated Carbon Nanosheets,” Small 20 (2024): 2306665, https://doi.org/10.1002/smll.202306665.

[50]

M. A. Aziz, S. S. Shah, Y. A. Mahnashi, et al., “A High-Energy Asymmetric Supercapacitor Based on Tomato-Leaf-Derived Hierarchical Porous Activated Carbon and Electrochemically Deposited Polyaniline Electrodes for Battery-Free Heart-Pulse-Rate Monitoring,” Small 19 (2023): 2300258, https://doi.org/10.1002/smll.202300258.

[51]

S. S. Shah, M. A. Aziz, M. A. Marzooqi, A. Z. Khan, and Z. H. Yamani, “Enhanced Light-Responsive Supercapacitor Utilizing BiVO4 and Date Leaves-Derived Carbon: A Leap Towards Sustainable Energy Harvesting and Storage,” Journal of Power Sources 602 (2024): 234334, https://doi.org/10.1016/j.jpowsour.2024.234334.

[52]

C. K. Roy, S. S. Shah, A. H. Reaz, et al., “Preparation of Hierarchical Porous Activated Carbon From Banana Leaves for High-Performance Supercapacitor: Effect of Type of Electrolytes on Performance,” Chemistry - An Asian Journal 16 (2021): 296-308, https://doi.org/10.1002/asia.202001342.

[53]

C. Huang, T. Sun, and D. Hulicova-Jurcakova, “Wide Electrochemical Window of Supercapacitors From Coffee Bean-Derived Phosphorus-Rich Carbons,” Chemsuschem 6 (2013): 2330-2339, https://doi.org/10.1002/cssc.201300457.

[54]

G. Xu, J. Han, B. Ding, et al., “Biomass-Derived Porous Carbon Materials With Sulfur and Nitrogen Dual-Doping for Energy Storage,” Green Chemistry 17 (2015): 1668-1674, https://doi.org/10.1039/C4GC02185A.

[55]

J. M. Valente Nabais, J. G. Teixeira, and I. Almeida, “Development of Easy Made Low Cost Bindless Monolithic Electrodes From Biomass With Controlled Properties to Be Used as Electrochemical Capacitors,” Bioresource Technology 102 (2011): 2781-2787, https://doi.org/10.1016/j.biortech.2010.11.083.

[56]

Z. Li, L. Zhang, B. S. Amirkhiz, et al., “Carbonized Chicken Eggshell Membranes With 3D Architectures as High-Performance Electrode Materials for Supercapacitors,” Advanced Energy Materials 2 (2012): 431-437, https://doi.org/10.1002/aenm.201100548.

[57]

S. Song, F. Ma, G. Wu, D. Ma, W. Geng, and J. Wan, “Facile Self-Templating Large Scale Preparation of Biomass-Derived 3D Hierarchical Porous Carbon for Advanced Supercapacitors,” Journal of Materials Chemistry A 3 (2015): 18154-18162, https://doi.org/10.1039/C5TA04721H.

[58]

W. Zhang, H. Lin, Z. Lin, et al., “3D Hierarchical Porous Carbon for Supercapacitors Prepared From Lignin Through a Facile Template-Free Method,” Chemsuschem 8 (2015): 2114-2122, https://doi.org/10.1002/cssc.201403486.

[59]

Z. Zhao, S. Hao, P. Hao, et al., “Lignosulphonate-Cellulose Derived Porous Activated Carbon for Supercapacitor Electrode,” Journal of Materials Chemistry A: Materials for Energy and Sustainability 3 (2015): 15049-15056, https://doi.org/10.1039/C5TA02770E.

[60]

R. Ruiz-Rosas, M. J. Valero-Romero, D. Salinas-Torres, et al., “Electrochemical Performance of Hierarchical Porous Carbon Materials Obtained From the Infiltration of Lignin Into Zeolite Templates,” Chemsuschem 7 (2014): 1458-1467, https://doi.org/10.1002/cssc.201301408.

[61]

D. Zhou, H. Wang, N. Mao, et al., “High Energy Supercapacitors Based on Interconnected Porous Carbon Nanosheets With Ionic Liquid Electrolyte,” Microporous and Mesoporous Materials 241 (2017): 202-209, https://doi.org/10.1016/j.micromeso.2017.01.001.

[62]

Z. Lin, D. Barbara, P.-L. Taberna, et al., “Capacitance of Ti3C2Tx MXene in Ionic Liquid Electrolyte,” Journal of Power Sources 326 (2016): 575-579, https://doi.org/10.1016/j.jpowsour.2016.04.035.

[63]

L. Qiao, A. Shougee, T. Albrecht, and K. Fobelets, “Oxide-Coated Silicon Nanowire Array Capacitor Electrodes in Room Temperature Ionic Liquid,” Electrochimica Acta 210 (2016): 32-37, https://doi.org/10.1016/j.electacta.2016.05.088.

[64]

Z. Li, J. Liu, K. Jiang, and T. Thundat, “Carbonized Nanocellulose Sustainably Boosts the Performance of Activated Carbon in Ionic Liquid Supercapacitors,” Nano Energy 25 (2016): 161-169, https://doi.org/10.1016/j.nanoen.2016.04.036.

[65]

B. Shen, X. Zhang, R. Guo, J. Lang, J. Chen, and X. Yan, “Carbon Encapsulated RuO2 Nano-Dots Anchoring on Graphene as an Electrode for Asymmetric Supercapacitors With Ultralong Cycle Life in an Ionic Liquid Electrolyte,” Journal of Materials Chemistry A 4 (2016): 8180-8189, https://doi.org/10.1039/c6ta02473d.

[66]

J.-B. Jorcin, M. E. Orazem, N. Pébère, and B. Tribollet, “CPE Analysis by Local Electrochemical Impedance Spectroscopy,” Electrochimica Acta 51 (2006): 1473-1479, https://doi.org/10.1016/j.electacta.2005.02.128.

RIGHTS & PERMISSIONS

2025 The Author(s). Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/