Lithium Borate/Boric Acid Optimized Multifunctional Binder Facilitates Silicon Anodes With Enhanced Initial Coulombic Efficiency, Structural Strength, and Cycling Stability

Xiang Wang , Tingting Li , Naiwen Liang , Xiaofan Liu , Fan Zhang , Yangfan Li , Yating Yang , Yujie Yang , Wenqing Ma , Zhongchang Wang , Jiang Yin , Yahui Yang , Lishan Yang

Battery Energy ›› 2025, Vol. 4 ›› Issue (2) : e70003

PDF
Battery Energy ›› 2025, Vol. 4 ›› Issue (2) : e70003 DOI: 10.1002/bte2.70003
RESEARCH ARTICLE

Lithium Borate/Boric Acid Optimized Multifunctional Binder Facilitates Silicon Anodes With Enhanced Initial Coulombic Efficiency, Structural Strength, and Cycling Stability

Author information +
History +
PDF

Abstract

Silicon-based anodes are among the most appealing possibilities for high-capacity anode materials, considering that they possess a high theoretical capacity. However, the significant volumetric changes during cycling lead to rapid capacity degradation, hindering their commercial application in high-energy density lithium-ion batteries (LIBs). This research introduces a novel organic-inorganic cross-linked binder system: sodium alginate-lithium borate-boric acid (Alg-LBO-BA). This three-dimensional network structure effectively buffers the volumetric changes of Si particles, maintaining overall electrode stability. LBO serves as prelithiation agent, compensating for irreversible lithium consumption during SEI formation, and the Si−O−B structure offers a plethora of Lewis acid sites, enhancing lithium-ion transport and interfacial stability. At a current activation of 0.2 A g−1, the optimized silicon anode shows an initial coulombic efficiency (ICE) of 91%. After 200 cycles at 1 A g−1, it retains a reversible capacity of 1631.8 mAh g−1 and achieves 1768.0 mAh g−1 at a high current density of 5 A g−1. This study presents a novel approach to designing organic-inorganic binders for silicon anodes, significantly advancing the development of high-performance silicon anodes.

Keywords

boric / cross-linked binder / lithium borate / silicon anode / solid electrolyte interphase (SEI)

Cite this article

Download citation ▾
Xiang Wang, Tingting Li, Naiwen Liang, Xiaofan Liu, Fan Zhang, Yangfan Li, Yating Yang, Yujie Yang, Wenqing Ma, Zhongchang Wang, Jiang Yin, Yahui Yang, Lishan Yang. Lithium Borate/Boric Acid Optimized Multifunctional Binder Facilitates Silicon Anodes With Enhanced Initial Coulombic Efficiency, Structural Strength, and Cycling Stability. Battery Energy, 2025, 4(2): e70003 DOI:10.1002/bte2.70003

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Yang, S. Biswas, R. Xu, et al., “Capacity Recovery by Transient Voltage Pulse in Silicon-Anode Batteries,” Science 386, no. 6719 (2024): 322-327.

[2]

T. Kwon, J. W. Choi, and A. Coskun, “The Emerging Era of Supramolecular Polymeric Binders in Silicon Anodes,” Chemical Society Reviews 47, no. 6 (2018): 2145-2164.

[3]

A. Tomaszewska, Z. Chu, X. Feng, et al., “Lithium-Ion Battery Fast Charging: A Review,” eTransportation 1 (2019): 100011.

[4]

Z. Cheng, W. Chen, Y. Zhang, et al., “Enhanced Cycleability of Micron-Size Silicon Anode by In Situ Polymerized Polymer Electrolyte,” Advanced Functional Materials 34, no. 48 (2024): 2408145.

[5]

H. Zhao, J. Li, Q. Zhao, et al., “Si-Based Anodes: Advances and Challenges in Li-Ion Batteries for Enhanced Stability,” Electrochemical Energy Reviews 7, no. 1 (2024): 11.

[6]

M. Khan, S. Yan, M. Ali, et al., “Innovative Solutions for High-Performance Silicon Anodes in Lithium-Ion Batteries: Overcoming Challenges and Real-World Applications,” Nano-Micro Letters 16, no. 1 (2024): 179.

[7]

Y. Zhai, Z. Zhong, N. Kuang, et al., “Both Resilience and Adhesivity Define Solid Electrolyte Interphases for a High Performance Anode,” Journal of the American Chemical Society 146, no. 22 (2024): 15209-15218.

[8]

G. Zhu, D. Chao, W. Xu, M. Wu, and H. Zhang, “Microscale Silicon-Based Anodes: Fundamental Understanding and Industrial Prospects for Practical High-Energy Lithium-Ion Batteries,” ACS Nano 15, no. 10 (2021): 15567-15593.

[9]

S. Devanahalli Bokkassam and J. Nambi Krishnan, “Lithium Ion Batteries: Characteristics, Recycling and Deep-Sea Mining,” Battery Energy 3, no. 6 (2024): 20240022.

[10]

M. Zhang, N. Liang, D. Hao, et al., “Recent Advances of SioX-Based Anodes for Sustainable Lithium-Ion Batteries,” Nano Research Energy 2 (2023): e9120077.

[11]

L. B. Huang, L. Zhao, Z. F. Ma, et al., “Vertically Fluorinated Graphene Encapsulated SioX Anode for Enhanced Li+ Transport and Interfacial Stability in High-Energy-Density Lithium Batteries,” Angewandte Chemie International Edition 63, no. 47 (2024): e202413600.

[12]

H. Chen, M. Ling, L. Hencz, et al., “Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices,” Chemical Reviews 118, no. 18 (2018): 8936-8982.

[13]

T. Kwon, J. W. Choi, and A. Coskun, “The Emerging Era of Supramolecular Polymeric Binders in Silicon Anodes,” Chemical Society Reviews 47, no. 6 (2018): 2145-2164.

[14]

M. N. Ramdhiny and J. W. Jeon, “Design of Multifunctional Polymeric Binders in Silicon Anodes for Lithium-Ion Batteries,” Carbon Energy 6, no. 4 (2024): e356.

[15]

L. Li, Y. Yang, Z. Huang, et al., “Hydrogen Bond Interaction Derived Homogeneous Graphene Coating on Submicron Silicon Anode,” Battery Energy 3, no. 3 (2024): 20230068.

[16]

D. Bresser, D. Buchholz, A. Moretti, A. Varzi, and S. Passerini, “Alternative Binders for Sustainable Electrochemical Energy Storage - the Transition to Aqueous Electrode Processing and Bio-Derived Polymers,” Energy & Environmental Science 11, no. 11 (2018): 3096-3127.

[17]

W. Dou, M. Zheng, W. Zhang, et al., “Review on the Binders for Sustainable High-Energy-Density Lithium Ion Batteries: Status, Solutions, and Prospects,” Advanced Functional Materials 33, no. 45 (2023): 2305161.

[18]

T. Li, Y. Li, F. Zhang, et al., “Piranha Solution-Assisted Surface Engineering Enables Silicon Nanocrystals With Superior Wettability and Lithium Storage,” Crystals 13, no. 7 (2023): 1127.

[19]

B. Koo, H. Kim, Y. Cho, K. T. Lee, N. S. Choi, and J. Cho, “A Highly Cross-Linked Polymeric Binder for High-Performance Silicon Negative Electrodes in Lithium Ion Batteries,” Angewandte Chemie International Edition 51, no. 35 (2012): 8762-8767.

[20]

W. Zhu, J. Zhou, F. Zhang, et al., “Sustainable Silicon Micro-Dendritic Anodes Integrated by a Moderately Cross-Linked Polymer Binder With Superior Elasticity and Adhesion,” Journal of Alloys and Compounds 926 (2022): 166858.

[21]

A. Casimir, H. Zhang, O. Ogoke, J. C. Amine, J. Lu, and G. Wu, “Silicon-Based Anodes for Lithium-Ion Batteries: Effectiveness of Materials Synthesis and Electrode Preparation,” Nano Energy 27 (2016): 359-376.

[22]

J. Chen, L. Han, W. Zhang, et al., “A Robust Network Binder Enables High-Performance Silicon Anode via Localized Linking by Small Molecules,” Battery Energy 3, no. 5 (2024): 20240008.

[23]

W. Zhu, J. Zhou, F. Zhang, et al., “Sustainable Silicon Micro-Dendritic Anodes Integrated by a Moderately Cross-Linked Polymer Binder With Superior Elasticity and Adhesion,” Journal of Alloys and Compounds 926 (2022): 166858.

[24]

Z. Cao, X. Zheng, W. Huang, Y. Wang, Q. Qu, and H. Zheng, “Dynamic Bonded Supramolecular Binder Enables High-Performance Silicon Anodes in Lithium-Ion Batteries,” Journal of Power Sources 463 (2020): 228208.

[25]

J. Li, X. Hu, H. Zhao, Y. Ren, and X. Huang, “Cross-Linked Sodium Alginate-Sodium Borate Hybrid Binders for High-Capacity Silicon Anodes in Lithium-Ion Batteries,” Langmuir 38, no. 1 (2022): 402-410.

[26]

L. Zhang, Y. Ding, and J. Song, “Crosslinked Carboxymethyl Cellulose-Sodium Borate Hybrid Binder for Advanced Silicon Anodes in Lithium-Ion Batteries,” Chinese Chemical Letters 29, no. 12 (2018): 1773-1776.

[27]

H. Kang, M. Song, M. Yang, and J. Lee, “Lithium Metal Anode With Lithium Borate Layer for Enhanced Cycling Stability of Lithium Metal Batteries,” Journal of Power Sources 485 (2021): 229286.

[28]

N. C. Rosero-Navarro, T. Yamashita, A. Miura, M. Higuchi, and K. Tadanaga, “Preparation of Li7La3(Zr2−x,Nbx)O12 (x = 0-1.5) and Li3BO3/LiBO2 Composites at Low Temperatures Using a Sol-Gel Process,” Solid State Ionics 285 (2016): 6-12.

[29]

X. Zeng, T. Jian, Y. Lu, et al., “Enhancing High-Temperature and High-Voltage Performances of Single-Crystal Lini0.5Co0.2Mn0.3O2 Cathodes Through a LiBO2/LiAlO2 Dual-Modification Strategy,” ACS Sustainable Chemistry & Engineering 8, no. 16 (2020): 6293-6304.

[30]

W. He, T. Zhang, Z. Li, et al., “B-Doped SiOX Composite With Three Dimensional Conductive Network for High Performance Lithium-Ion Battery Anode,” Journal of Materiomics 7, no. 4 (2021): 802-809.

[31]

W. Mai, Q. Yu, C. Han, F. Kang, and B. Li, “Self-Healing Materials for Energy-Storage Devices,” Advanced Functional Materials 30, no. 24 (2020): 1909912.

[32]

Z. Cao, X. Zheng, W. Huang, Y. Wang, Q. Qu, and H. Zheng, “Dynamic Bonded Supramolecular Binder Enables High-Performance Silicon Anodes in Lithium-Ion Batteries,” Journal of Power Sources 463 (2020): 228208.

[33]

X. Li, M. Tabish, W. Zhu, X. Chen, and H. Song, “A Uniform Self-Reinforced Organic/Inorganic Hybrid SEI Chelation Strategy on Microscale Silicon Surfaces for Stable-Cycling Anodes in Lithium-Ion Batteries,” Small 19, no. 41 (2023): 2302388.

[34]

Z. Wu, Z. Wan, Z. Li, et al., “Partially Carbonized Polymer Binder With Polymer Dots for Silicon Anodes in Lithium-Ion Batteries,” Small 19, no. 2 (2023): 2205065.

[35]

H. F. Shurvell, “Spectra - Structure Correlations in the Mid- and Far-Infrared.” in Handbook of Vibrational Spectroscopy (John Wiley & Sons, 2001).

[36]

G. Greczynski and L. Hultman, “X-Ray Photoelectron Spectroscopy: Towards Reliable Binding Energy Referencing,” Progress in Materials Science 107 (2020): 100591.

[37]

C. D. Wagner, A. V. Naumkin, A. Kraut-Vass, J. W. Allison, C. J. Powell, and J. R. Rumble Jr., NIST Standard Reference Database 20, Version 3.4 (web version). NIST; 2003, http://srdata.nist.gov/xps/.

[38]

J. Hu, Y. Wang, D. Li, and Y. T. Cheng, “Effects of Adhesion and Cohesion on the Electrochemical Performance and Durability of Silicon Composite Electrodes,” Journal of Power Sources 397 (2018): 223-230.

[39]

Y. Kang, N. Dong, F. Liu, et al., “Constructing High-Toughness Polyimide Binder With Robust Polarity and Ion-Conductive Mechanisms Ensuring Long-Term Operational Stability of Silicon-Based Anodes,” Journal of Energy Chemistry 93 (2024): 580-591.

[40]

J. Chen, X. Fan, Q. Li, et al., “Electrolyte Design for Lif-Rich Solid-Electrolyte Interfaces to Enable High-Performance Microsized Alloy Anodes for Batteries,” Nature Energy 5, no. 5 (2020): 386-397.

[41]

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions: I. Orientation Dependence and Behavior of Passivation Layers,” Journal of the Electrochemical Society 137, no. 11 (1990): 3612-3626.

[42]

Z. Qiu, S. Yuan, Z. Wang, et al., “Construction of Silica-Oxygen-Borate Hybrid Networks on Al2O3-Coated Polyethylene Separators Realizing Multifunction for High-Performance Lithium Ion Batteries,” Journal of Power Sources 472 (2020): 228445.

[43]

Y. K. Kim, J. W. Moon, J. G. Lee, Y. K. Baek, and S. H. Hong, “Porous Carbon-Coated Silica Macroparticles as Anode Materials for Lithium Ion Batteries: Effect of Boric Acid,” Journal of Power Sources 272 (2014): 689-695.

[44]

K. Sun, X. Li, Z. Zhang, et al., “Unexpected Stable Cycling Performance at Low Temperatures of Li-Ion Batteries With Si/C Anodes,” Energy Storage Materials 66 (2024): 103216.

[45]

Q. Fang, S. Xu, X. Sha, et al., “Interfacial Degradation of Silicon Anodes in Pouch Cells,” Energy & Environmental Science 17, no. 17 (2024): 6368-6376.

[46]

Y. Li, Z. Cao, Y. Wang, et al., “New Insight Into the Role of Fluoro-Ethylene Carbonate in Suppressing Li-Trapping for Si Anodes in Lithium-Ion Batteries,” ACS Energy Letters 8, no. 10 (2023): 4193-4203.

RIGHTS & PERMISSIONS

2025 The Authors. Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

48

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/