Optimizing Hard Carbon Anodes for Sodium-Ion Batteries: Effects of Pre-Treatment and Post-Treatment Techniques

Muetaz Mohammed , Mohammad M. Hossain , Md Abdullah Al Bari

Battery Energy ›› 2025, Vol. 4 ›› Issue (6) : e70047

PDF
Battery Energy ›› 2025, Vol. 4 ›› Issue (6) : e70047 DOI: 10.1002/bte2.20250054
REVIEW

Optimizing Hard Carbon Anodes for Sodium-Ion Batteries: Effects of Pre-Treatment and Post-Treatment Techniques

Author information +
History +
PDF

Abstract

Hard carbon (HC), an amorphous carbon-based material, is a promising anode for sodium-ion batteries (SIBs) due to its sustainability and electrochemical performance. Direct carbonization offers a simple and energy-efficient synthesis route with relatively high initial coulombic efficiency (ICE), though often at the expense of capacity. To overcome this limitation, both pre-treatment and post-treatment strategies have been developed to enhance HC properties. pre-treatment methods modify structural characteristics during synthesis by increasing structural disorder, surface activity, and defect density. In contrast, post-treatment methods improve the electrochemical behavior of the final product, yet remain comparatively underexplored. These two approaches serve complementary functions and, when integrated, offer potential for optimizing performance. This review discusses the methodologies, benefits, limitations, and impact of various pre- and post-treatment strategies for HC anodes in SIBs. Advancing understanding in this area is essential for the development of high-performance and sustainable SIB technologies.

Keywords

hard carbon / hard carbon anodes / post-treatment / pre-treatment / sodium-ion batteries / synthesis

Cite this article

Download citation ▾
Muetaz Mohammed, Mohammad M. Hossain, Md Abdullah Al Bari. Optimizing Hard Carbon Anodes for Sodium-Ion Batteries: Effects of Pre-Treatment and Post-Treatment Techniques. Battery Energy, 2025, 4(6): e70047 DOI:10.1002/bte2.20250054

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. Nekahi, M. Dorri, M. Rezaei, et al., “Comparative Issues of Metal-Ion Batteries Toward Sustainable Energy Storage: Lithium vs. Sodium,” Batteries 10, no. 8 (2024), https://doi.org/10.3390/batteries10080279.

[2]

L. Xie, C. Tang, Z. Bi, et al., “Hard Carbon Anodes for Next-Generation Li-Ion Batteries: Review and Perspective,” Advanced Energy Materials 11, no. 38 (2021): 2101650, https://doi.org/10.1002/aenm.202101650.

[3]

W. Zhang, F. Zhang, F. Ming, and H. N. Alshareef, “Sodium-Ion Battery Anodes: Status and Future Trends,” EnergyChem 1, no. 2 (2019): 100012, https://doi.org/10.1016/j.enchem.2019.100012.

[4]

X. Chen, N. Sawut, K. Chen, et al., “Filling Carbon: A Microstructure-Engineered Hard Carbon for Efficient Alkali Metal Ion Storage,” Energy & Environmental Science 16, no. 9 (2023): 4041-4053, https://doi.org/10.1039/D3EE01154B.

[5]

Y. Wan, Y. Liu, D. Chao, W. Li, and D. Zhao, “Recent Advances in Hard Carbon Anodes With High Initial Coulombic Efficiency for Sodium-Ion Batteries,” Nano Materials Science 5, no. 2 (2023): 189-201, https://doi.org/10.1016/j.nanoms.2022.02.001.

[6]

L.-F. Zhao,Z. Hu, W.-H. Lai, et al., “Hard Carbon Anodes: Fundamental Understanding and Commercial Perspectives for Na-Ion Batteries Beyond Li-Ion and K-Ion Counterparts,” Advanced Energy Materials 11, no. 1 (2021): 2002704, https://doi.org/10.1002/aenm.202002704.

[7]

Y. Liu, W. Li, and Y. Xia, “Recent Progress in Polyanionic Anode Materials for Li (Na)-Ion Batteries,” Electrochemical Energy Reviews 4, no. 3 (2021): 447-472, https://doi.org/10.1007/s41918-021-00095-6.

[8]

J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen, and D. Bresser, “The Success Story of Graphite as a Lithium-Ion Anode Material—Fundamentals, Remaining Challenges, and Recent Developments Including Silicon (Oxide) Composites,” Sustainable Energy & Fuels 4, no. 11 (2020): 5387-5416, https://doi.org/10.1039/D0SE00175A.

[9]

Z. Liu, Z. Lu, S. Guo, Q.-H. Yang, and H. Zhou, “Toward High Performance Anodes for Sodium-Ion Batteries: From Hard Carbons to Anode-Free Systems,” ACS Central Science 9, no. 6 (2023): 1076-1087, https://doi.org/10.1021/acscentsci.3c00301.

[10]

Y. Zhang, Y. Wang, L. Hou, and C. Yuan, “Recent Progress of Carbon-Based Anode Materials for Potassium Ion Batteries,” Chemical Record 22, no. 10 (2022): e202200072, https://doi.org/10.1002/tcr.202200072.

[11]

M. M. Doeff, Y. Ma, S. J. Visco, and L. C. De Jonghe, “Electrochemical Insertion of Sodium Into Carbon,” Journal of the Electrochemical Society 140, no. 12 (1993): L169-L170, https://doi.org/10.1149/1.2221153.

[12]

D. Alvira, D. Antorán, and J. J. Manyà, “Plant-Derived Hard Carbon as Anode for Sodium-Ion Batteries: A Comprehensive Review to Guide Interdisciplinary Research,” Chemical Engineering Journal 447 (2022): 137468, https://doi.org/10.1016/j.cej.2022.137468.

[13]

P. Yu, W. Tang, F. F. Wu, et al., “Recent Progress in Plant-Derived Hard Carbon Anode Materials for Sodium-Ion Batteries: A Review,” Rare Metals 39 (2020): 1019-1033, https://doi.org/10.1007/s12598-020-01443-z.

[14]

D. A. Stevens and J. R. Dahn, “High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries,” Journal of the Electrochemical Society 147, no. 4 (2000): 1271, https://doi.org/10.1149/1.1393348.

[15]

C. Wu, Y. Yang, Y. Zhang, et al., “Hard Carbon for Sodium-Ion Batteries: Progress, Strategies and Future Perspective,” Chemical Science 15, no. 17 (2024): 6244-6268, https://doi.org/10.1039/D4SC00734D.

[16]

C. del Mar Saavedra Rios, A. Beda, L. Simonin, and C. Matei Ghimbeu, “Hard Carbon for Na-Ion Batteries: From Synthesis to Performance and Storage Mechanism,” in Na-ion Batteries (2021), 101-146, https://doi.org/10.1002/9781119818069.ch3.

[17]

X.-X. He, J. H. Zhao, W. H. Lai, et al., “Soft-Carbon-Coated, Free-Standing, Low-Defect, Hard-Carbon Anode to Achieve a 94% Initial Coulombic Efficiency for Sodium-Ion Batteries,” ACS Applied Materials & Interfaces 13, no. 37 (September 2021): 44358-44368, https://doi.org/10.1021/acsami.1c12171.

[18]

H. Zhang, H. Ming, W. Zhang, G. Cao, and Y. Yang, “Coupled Carbonization Strategy Toward Advanced Hard Carbon for High-Energy Sodium-Ion Battery,” ACS Applied Materials & Interfaces 9, no. 28 (2017): 23766-23774, Jul., https://doi.org/10.1021/acsami.7b05687.

[19]

C. Liu, J. Chu, Y. Liu, Y. Lyu, and B. Guo, “The Synergistic Effect of Carbon Coating and CNTs Compositing on the Hard Carbon Anode for Sodium Ion Batteries,” RSC Advances 9, no. 38 (2019): 21667-21670, https://doi.org/10.1039/C9RA04251B.

[20]

Z. Tong, Y. Qi, J. Zhao, L. Liu, X. Shen, and H. Liu, “One-Step Synthesis of Carbon-Coated Na3(VOPO4)2F Using Biomass as a Reducing Agent and Their Electrochemical Properties,” Waste and Biomass Valorization 11, no. 5 (2020): 2201-2209, https://doi.org/10.1007/s12649-018-0426-3.

[21]

S. Gan, Y. Huang, N. Hong, et al., “Comprehensive Understanding of Closed Pores in Hard Carbon Anode for High-Energy Sodium-Ion Batteries,” Nano-Micro Letters 17, no. 1 (2025): 325, https://doi.org/10.1007/s40820-025-01833-x.

[22]

Y. Guo, S. Ji, F. Liu, et al., “A Review of the Preparation and Characterization Techniques for Closed Pores in Hard Carbon and Their Functions in Sodium-ion Batteries,” Energy Materials 5, no. 1 (2025): 500030, https://doi.org/10.20517/energymater.2024.63.

[23]

O. M. Mutiat, A. Alpysbayev, D. Abduakhitov, et al., “Effect of Pre-Treatment Conditions on the Electrochemical Performance of Hard Carbon Derived From Bio-Waste,” RSC Advances 15, no. 2 (2025): 1105-1114, https://doi.org/10.1039/D4RA08029G.

[24]

J. Wang, J. Zhao, X. He, Y. Qiao, L. Li, and S. L. Chou, “Hard Carbon Derived From Hazelnut Shell With Facile HCl Treatment as High-Initial-Coulombic-Efficiency Anode for Sodium Ion Batteries,” Sustainable Materials and Technologies 33 (2022): 1-8, https://doi.org/10.1016/j.susmat.2022.e00446.

[25]

S. Komaba, T. Hasegawa, M. Dahbi, and K. Kubota, “Potassium Intercalation Into Graphite to Realize High-Voltage/High-Power Potassium-Ion Batteries and Potassium-Ion Capacitors,” Electrochemistry Communications 60 (2015): 172-175, https://doi.org/10.1016/j.elecom.2015.09.002.

[26]

A. Kamiyama, K. Kubota, D. Igarashi, et al., “MgO-Template Synthesis of Extremely High Capacity Hard Carbon for Na-Ion Battery,” Angewandte Chemie International Edition 60, no. 10 (2021): 5114-5120, https://doi.org/10.1002/anie.202013951.

[27]

Y. Yang,C. Wu, X.-X. He, et al., “Boosting the Development of Hard Carbon for Sodium-Ion Batteries: Strategies to Optimize the Initial Coulombic Efficiency,” Advanced Functional Materials 34, no. 5 (2024): 1-29, https://doi.org/10.1002/adfm.202302277.

[28]

D. A. Stevens and J. R. Dahn, “The Mechanisms of Lithium and Sodium Insertion in Carbon Materials,” Journal of the Electrochemical Society 148, no. 8 (2001): A803, https://doi.org/10.1149/1.1379565.

[29]

L. Spitthoff, P. R. Shearing, and O. S. Burheim, “Temperature, Ageing and Thermal Management of Lithium-Ion Batteries,” Energies 14, no. 5 (2021): 1248, https://doi.org/10.3390/en14051248.

[30]

D. Chen, W. Zhang, K. Luo, et al., “Hard Carbon for Sodium Storage: Mechanism and Optimization Strategies Toward Commercialization,” Energy & Environmental Science 14, no. 4 (2021): 2244-2262, https://doi.org/10.1039/d0ee03916k.

[31]

R. Zhao, N. Sun, and B. Xu, “Recent Advances in Heterostructured Carbon Materials as Anodes for Sodium-Ion Batteries,” Small Struct 2, no. 12 (2021): 2100132, https://doi.org/10.1002/sstr.202100132.

[32]

S. Ghosh, S. Barg, S. M. Jeong, and K. Ostrikov, “Heteroatom-Doped and Oxygen-Functionalized Nanocarbons for High-Performance Supercapacitors,” Advanced Energy Materials 10, no. 32 (2020): 2001239, https://doi.org/10.1002/aenm.202001239.

[33]

J. Ni, Y. Huang, and L. Gao, “A High-Performance Hard Carbon for Li-Ion Batteries and Supercapacitors Application,” Journal of Power Sources 223 (2013): 306-311, https://doi.org/10.1016/j.jpowsour.2012.09.047.

[34]

J. Zheng, Y. Wu, C. Guan, et al., “Lignin-Derived Hard Carbon Anode With a Robust Solid Electrolyte Interphase for Boosted Sodium Storage Performance,” Carbon Energy 6, no. 9 (2024): 1-10, https://doi.org/10.1002/cey2.538.

[35]

J. Conder, C. Villevieille, J.-M. Le Meins, and C. Matei Ghimbeu, “Is There a Ready Recipe for Hard Carbon Electrode Engineering to Enhance Na-Ion Battery Performance?,” ACS Applied Energy Materials 5, no. 10 (October 2022): 12373-12387, https://doi.org/10.1021/acsaem.2c01984.

[36]

X. Li, H. Wang, X. Liu, et al., “High-Performance Pitch-Based Hard Carbon for Sodium-Ion Batteries: Introducing Oxygen Functional Groups and Regulating Closed Pores by Adjusting Pre-Oxidation Rate,” Journal of Energy Storage 108 (2025): 114995, https://doi.org/10.1016/j.est.2024.114995.

[37]

H. Liu, S. Xiao, Z.-Q. Lei, et al., “Boosting Sodium Storage in Pitch-Derived Hard Carbon via MgO Catalytic Preoxidation,” ACS Applied Materials & Interfaces 17, no. 9 (2025): 13804-13813, https://doi.org/10.1021/acsami.4c19116.

[38]

H. Wang, S. Liu, C. Lei, et al., “P-Doped Hard Carbon Material for Anode of Sodium Ion Battery Was Prepared by Using Polyphosphoric Acid Modified Petroleum Asphalt as Precursor,” Electrochimica Acta 477 (2024): 143812, https://doi.org/10.1016/j.electacta.2024.143812.

[39]

X. Li, Y. Zhang, Y. Zhu, Y. Hu, Z. Kong, and Y. Zhang, “Coal-Based Hard Carbon Anode for High-Performance Sodium Ion Batteries via Coal-Based Graphene Oxide as a Multi-Functional Binder,” Materials Letters 366 (2024): 136541, https://doi.org/10.1016/j.matlet.2024.136541.

[40]

C. Nita, B. Zhang, J. Dentzer, and C. Matei Ghimbeu, “Hard Carbon Derived From Coconut Shells, Walnut Shells, and Corn Silk Biomass Waste Exhibiting High Capacity for Na-Ion Batteries,” Journal of Energy Chemistry 58 (2021): 207-218, https://doi.org/10.1016/j.jechem.2020.08.065.

[41]

Y.-E. Zhu, H. Gu, Y.-N. Chen, D. Yang, J. Wei, and Z. Zhou, “Hard Carbon Derived From Corn Straw Piths as Anode Materials for Sodium Ion Batteries,” Ionics 24, no. 4 (2018): 1075-1081, https://doi.org/10.1007/s11581-017-2260-1.

[42]

Y. Tang, J. He, J. Peng, et al., “Electrochemical Behavior of the Biomass Hard Carbon Derived From Waste Corncob as a Sodium-Ion Battery Anode,” Energy & Fuels 38, no. 8 (April 2024): 7389-7398, https://doi.org/10.1021/acs.energyfuels.4c00564.

[43]

C. M. Ghimbeu, A. Beda, B. Réty, et al., “Review: Insights on Hard Carbon Materials for Sodium-Ion Batteries (SIBs): Synthesis-Properties-Performance Relationships,” Advanced Energy Materials 14, no. 19 (2024): 2303833, https://doi.org/10.1002/aenm.202303833.

[44]

I. Izanzar, M. Dahbi, M. Kiso, S. Doubaji, S. Komaba, and I. Saadoune, “Hard Carbons Issued From Date Palm as Efficient Anode Materials for Sodium-Ion Batteries,” Carbon 137 (2018): 165-173, https://doi.org/10.1016/j.carbon.2018.05.032.

[45]

V. Simone, A. Boulineau, A. de Geyer, D. Rouchon, L. Simonin, and S. Martinet, “Hard Carbon Derived From Cellulose as Anode for Sodium Ion Batteries: Dependence of Electrochemical Properties on Structure,” Journal of Energy Chemistry 25, no. 5 (2016): 761-768, https://doi.org/10.1016/j.jechem.2016.04.016.

[46]

J. Choi, M. E. Lee, S. Lee, H.-J. Jin, and Y. S. Yun, “Pyroprotein-Derived Hard Carbon Fibers Exhibiting Exceptionally High Plateau Capacities for Sodium Ion Batteries,” ACS Applied Energy Materials 2, no. 2 (2019): 1185-1191, https://doi.org/10.1021/acsaem.8b01734.

[47]

T. Zhang, T. Zhang, F. Wang, and F. Ran, “Pretreatment Process Before Heat Pyrolysis of Plant-Based Precursors Paving Way for Fabricating High-Performance Hard Carbon for Sodium-Ion Batteries,” ChemElectroChem 10, no. 24 (2023): e202300442, https://doi.org/10.1002/celc.202300442.

[48]

N. Daher, D. Huo, C. Davoisne, P. Meunier, and R. Janot, “Impact of Preoxidation Treatments on Performances of Pitch-Based Hard Carbons for Sodium-Ion Batteries,” ACS Applied Energy Materials 3, no. 7 (2020): 6501-6510, https://doi.org/10.1021/acsaem.0c00727.

[49]

L. Cong, G. Tian, D. Luo, X. Ren, and X. Xiang, “Hydrothermally Assisted Transformation of Corn Stalk Wastes Into High-Performance Hard Carbon Anode for Sodium-Ion Batteries,” Journal of Electroanalytical Chemistry 871 (2020): 114249, https://doi.org/10.1016/j.jelechem.2020.114249.

[50]

F. Yang, S. Zhang, K. Cheng, and M. Antonietti, “A Hydrothermal Process to Turn Waste Biomass Into Artificial Fulvic and Humic Acids for Soil Remediation,” Science of the Total Environment 686 (2019): 1140-1151, https://doi.org/10.1016/j.scitotenv.2019.06.045.

[51]

Z. Xu, J. Wang, Z. Guo, et al., “The Role of Hydrothermal Carbonization in Sustainable Sodium-Ion Battery Anodes,” Advanced Energy Materials 12, no. 18 (2022): 2200208, https://doi.org/10.1002/aenm.202200208.

[52]

Y. Xin, S. Nie, S. Pan, et al., “Electrospinning Fabrication of Sb-SnSb/TiO2@CNFs Composite Nanofibers as High-Performance Anodes for Lithium-Ion Batteries,” Journal of Colloid and Interface Science 630 (2023): 403-414, https://doi.org/10.1016/j.jcis.2022.10.112.

[53]

X. Li, Q. Qian, W. Zheng, et al., “Preparation and Characteristics of LaOCl Nanotubes by Coaxial Electrospinning,” Materials Letters 80 (2012): 43-45, https://doi.org/10.1016/j.matlet.2012.04.030.

[54]

M. Guo, H. Zhang, Z. Huang, et al., “Liquid Template Assisted Activation for ‘Egg Puff’-Like Hard Carbon Toward High Sodium Storage Performance,” Small 19, no. 39 (2023): 1-12, https://doi.org/10.1002/smll.202302583.

[55]

B. Wu, H. Sun, X. Li, et al., “Petroleum Pitch Derived Hard Carbon via NaCl-Template as Anode Materials With High Rate Performance for Sodium Ion Battery,” Frontiers of Chemical Science and Engineering 18, no. 7 (2024): 73, https://doi.org/10.1007/s11705-024-2430-4.

[56]

Y. Chen, H. Sun, X. He, et al., “Pre-Oxidation Strategy Transforming Waste Foam to Hard Carbon Anodes for Boosting Sodium Storage Performance,” Small 20, no. 12 (2024): 2307132, https://doi.org/10.1002/smll.202307132.

[57]

Y. Xu, D. Guo, Y. Luo, et al., “Constructing Abundant Oxygen-Containing Functional Groups in Hard Carbon Derived from Anthracite for High-Performance Sodium-Ion Batteries,” Nanomaterials 13 (2023): 3002, https://doi.org/10.3390/nano13233002.

[58]

M. Adam, T. Abdalla, M. Mohammed, M. A. A. Bari, and M. M. Hossain, “Fabrication, Characterization, and Applications of Hard Carbons: A Comprehensive Review,” Journal of Power Sources 652 (2025): 237674, https://doi.org/10.1016/j.jpowsour.2025.237674.

[59]

R. Ahmadi, M. S. Alivand, N. Haj Mohammad Hossein Tehrani, et al., “Preparation of Fiber-Like Nanoporous Carbon From Jute Thread Waste for Superior CO2 and H2S Removal From Natural Gas: Experimental and DFT Study,” Chemical Engineering Journal 415 (2021): 129076.

[60]

X. Tang, F. Xie, Y. Lu, et al., “Intrinsic Effects of Precursor Functional Groups on the Na Storage Performance in Carbon Anodes,” Nano Research 16, no. 11 (2023): 12579-12586, https://doi.org/10.1007/s12274-023-5643-9.

[61]

L. Pei, H. Cao, L. Yang, et al., “Hard Carbon Derived From Waste Tea Biomass as High-Performance Anode Material for Sodium-Ion Batteries,” Ionics 26 (2020): 5535-5542, https://doi.org/10.1007/s11581-020-03723-1.

[62]

Y. Zhu, X. Tang, Z. Kong, et al., “Pre-Oxidation Modification of Bituminous Coal-Based Hard Carbon for High-Quality Sodium Ion Storage,” Solid State Ionics 416 (2024): 116668, https://doi.org/10.1016/j.ssi.2024.116668.

[63]

J. J. Manyà, “Pyrolysis for Biochar Purposes: A Review to Establish Current Knowledge Gaps and Research Needs,” Environmental Science & Technology 46, no. 15 (2012): 7939-7954, https://doi.org/10.1021/es301029g.

[64]

W.-J. Liu, H. Jiang, and H.-Q. Yu, “Emerging Applications of Biochar-Based Materials for Energy Storage and Conversion,” Energy & Environmental Science 12, no. 6 (2019): 1751-1779, https://doi.org/10.1039/C9EE00206E.

[65]

W.-J. Liu, H. Jiang, and H.-Q. Yu, “Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material,” Chemical Reviews 115, no. 22 (2015): 12251-12285, https://doi.org/10.1021/acs.chemrev.5b00195.

[66]

T. Zhang, J. Mao, X. Liu, et al., “Pinecone Biomass-Derived Hard Carbon Anodes for High-Performance Sodium-Ion Batteries,” RSC Advances 7, no. 66 (2017): 41504-41511, https://doi.org/10.1039/C7RA07231G.

[67]

X. Yang, H. He, T. Lv, and J. Qiu, “Fabrication of Biomass-Based Functional Carbon Materials for Energy Conversion and Storage,” Materials Science and Engineering: R: Reports 154 (2023): 100736, https://doi.org/10.1016/j.mser.2023.100736.

[68]

Y. Li, Y. Lu, Q. Meng, et al., “Regulating Pore Structure of Hierarchical Porous Waste Cork-Derived Hard Carbon Anode for Enhanced Na Storage Performance,” Advanced Energy Materials 9, no. 48 (2019): 1-9, https://doi.org/10.1002/aenm.201902852.

[69]

J. Yin, Y. S. Zhang, H. Liang, W. Zhang, and Y. Zhu, “Synthesis Strategies of Hard Carbon Anodes for Sodium-Ion Batteries,” Materials Reports: Energy 4, no. 2 (2024): 100268, https://doi.org/10.1016/j.matre.2024.100268.

[70]

Y. Yan, G. Chen, W. Liu, M. Qu, Z. Xie, and F. Wang, “Pre‑Carbonization for Regulating Sucrose-Based Hard Carbon Pore Structure as High Plateau Capacity Sodium-Ion Battery Anode,” Journal of Energy Storage 104, PB (2024): 114590, https://doi.org/10.1016/j.est.2024.114590.

[71]

C. Marino, J. Cabanero, M. Povia, and C. Villevieille, “Biowaste Lignin-Based Carbonaceous Materials as Anodes for Na-Ion Batteries,” Journal of the Electrochemical Society 165, no. 7 (2018): A1400-A1408, https://doi.org/10.1149/2.0681807jes.

[72]

Z. Xu, J. Chen, M. Wu, C. Chen, Y. Song, and Y. Wang, “Effects of Different Atmosphere on Electrochemical Performance of Hard Carbon Electrode in Sodium Ion Battery,” Electronic Materials Letters 15 (2019): 428-436, https://doi.org/10.1007/s13391-019-00143-w.

[73]

E. Irisarri, A. Ponrouch, and M. R. Palacin, “Review—Hard Carbon Negative Electrode Materials for Sodium-Ion Batteries,” Journal of the Electrochemical Society 162, no. 14 (2015): A2476-A2482, https://doi.org/10.1149/2.0091514jes.

[74]

L. Xiao, H. Lu, Y. Fang, et al., “Low-Defect and Low-Porosity Hard Carbon With High Coulombic Efficiency and High Capacity for Practical Sodium Ion Battery Anode,” Advanced Energy Materials 8, no. 20 (2018): 1-7, https://doi.org/10.1002/aenm.201703238.

[75]

N. Nieto, J. Porte, D. Saurel, et al., “Use of Hydrothermal Carbonization to Improve the Performance of Biowaste-Derived Hard Carbons in Sodium Ion-Batteries,” Chemsuschem 16, no. 23 (2023): e202301053, https://doi.org/10.1002/cssc.202301053.

[76]

Y. Li, D. Xia, L. Tao, et al., “Hydrothermally Assisted Conversion of Switchgrass Into Hard Carbon as Anode Materials for Sodium-Ion Batteries,” ACS Applied Materials & Interfaces 16, no. 22 (2024): 28461-28472, Jun., https://doi.org/10.1021/acsami.4c02734.

[77]

N. Nieto, J. Porte, D. Saurel, et al., “Use of Hydrothermal Carbonization to Improve the Performance of Biowaste-Derived Hard Carbons in Sodium Ion-Batteries,” Chemsuschem 16, no. 23 (2023): e202301053, https://doi.org/10.1002/cssc.202301053.

[78]

S. Wang, H. Shi, Y. Xia, et al., “Electrospun-Based Nanofibers for Sodium and Potassium Ion Storage: Structure Design for Alkali Metal Ions With Large Radius,” Journal of Alloys and Compounds 918 (2022): 165680, https://doi.org/10.1016/j.jallcom.2022.165680.

[79]

B. Li, M. Pei, Y. Qu, et al., “Electrospun Core-Shell Carbon Nanofibers as Free-Standing Anode Materials for Sodium-Ion Batteries,” ACS Applied Nano Materials 7, no. 9 (May 2024): 10760-10769, https://doi.org/10.1021/acsanm.4c01276.

[80]

C. Li, M. Qiu, R. Li, et al., “Electrospinning Engineering Enables High-Performance Sodium-Ion Batteries,” Advanced Fiber Materials 4, no. 1 (2022): 43-65, https://doi.org/10.1007/s42765-021-00088-6.

[81]

F. Wu, R. Dong, Y. Bai, et al., “Phosphorus-Doped Hard Carbon Nanofibers Prepared by Electrospinning as an Anode in Sodium-Ion Batteries,” ACS Applied Materials & Interfaces 10, no. 25 (2018): 21335-21342, Jun., https://doi.org/10.1021/acsami.8b05618.

[82]

K. Peuvot, O. Hosseinaei, P. Tomani, D. Zenkert, and G. Lindbergh, “Lignin Based Electrospun Carbon Fiber Anode for Sodium Ion Batteries,” Journal of the Electrochemical Society 166, no. 10 (2019): A1984-A1990, https://doi.org/10.1149/2.0711910jes.

[83]

D. Igarashi, Y. Tanaka, K. Kubota, et al., “New Template Synthesis of Anomalously Large Capacity Hard Carbon for Na- and K-Ion Batteries,” Advanced Energy Materials 13, no. 47 (2023): 2302647, https://doi.org/10.1002/aenm.202302647.

[84]

D. Zhang, G. Huang, H. Zhang, et al., “Soft Template-Induced Self-Assembly Strategy for Sustainable Production of Porous Carbon Spheres as Anode Towards Advanced Sodium-Ion Batteries,” Chemical Engineering Journal 495 (2024): 153646, https://doi.org/10.1016/j.cej.2024.153646.

[85]

S. Prykhodska, K. Schutjajew, E. Troschke, et al., “The Impact of Templating and Macropores in Hard Carbons on Their Properties as Negative Electrode Materials in Sodium-Ion Batteries,” Energy Advances 3, no. 6 (2024): 1342-1353, https://doi.org/10.1039/D4YA00129J.

[86]

A. Kamiyama, K. Kubota, D. Igarashi, et al., “MgO-Template Synthesis of Extremely High Capacity Hard Carbon for Na-Ion Battery,” Angewandte Chemie International Edition 60, no. 10 (2021): 5114-5120, https://doi.org/10.1002/anie.202013951.

[87]

M. Li, Z. Li, H. Song, et al., “Understanding the Regulation of Sulfur on Surface-Dominated Hard Carbon Anode for Sodium Ion Batteries,” Journal of Power Sources 625 (2025): 235685, https://doi.org/10.1016/j.jpowsour.2024.235685.

[88]

K. Hong, L. Qie, R. Zeng, et al., “Biomass Derived Hard Carbon Used as a High Performance Anode Material for Sodium Ion Batteries,” Journal of Materials Chemistry A 2, no. 32 (2014): 12733-12738, https://doi.org/10.1039/C4TA02068E.

[89]

S. J. R. Prabakar, J. Jeong, and M. Pyo, “Nanoporous Hard Carbon Anodes for Improved Electrochemical Performance in Sodium Ion Batteries,” Electrochimica Acta 161 (2015): 23-31, https://doi.org/10.1016/j.electacta.2015.02.086.

[90]

Z. Zhou, Z. Wang, and L. Fan, “In-Situ Capture Defects Through Molecule Grafting Assisted in Coal-Based Hard Carbon Anode for Sodium-Ion Batteries,” Chemical Engineering Journal 490 (2024): 151428, https://doi.org/10.1016/j.cej.2024.151428.

[91]

M. Song, Z. Yi, R. Xu, et al., “Towards Enhanced Sodium Storage of Hard Carbon Anodes: Regulating the Oxygen Content in Precursor by Low-Temperature Hydrogen Reduction,” Energy Storage Materials 51 (2022): 620-629, https://doi.org/10.1016/j.ensm.2022.07.005.

[92]

D. Wang, J. Zheng, S. Tan, et al., “Constructing Carbonyl Interface and Closed Pore Structure via Oxidative Crosslinking in Starch-Derived Hard Carbon for Enhanced Sodium Storage,” Chemical Engineering Journal 511 (2025): 161863, https://doi.org/10.1016/j.cej.2025.161863.

[93]

Y. Fang, M. Lu, H. Qian, et al., “A Cross-Linking Strategy to Regulate the Surface Defects and Pore Structures of Lignin-Derived Hard Carbon as High-Performance Anode for Sodium-Ion Batteries,” ACS Applied Energy Materials 8 (June 2025): 8320-8330, https://doi.org/10.1021/acsaem.5c00828.

[94]

Z. Zhou, Y. Zhang, Q. Zhang, et al., “Orbital Hybridization States of Carbon Assisted Robust Inorganic-Rich Solid Electrolyte Interphase Towards High Initial Coulombic Efficiency Hard Carbon Anode,” Chinese Chemical Letters (2025): 111506, In press, https://doi.org/10.1016/j.cclet.2025.111506.

[95]

X. Dou, I. Hasa, D. Saurel, et al., “Impact of the Acid Treatment on Lignocellulosic Biomass Hard Carbon for Sodium-Ion Battery Anodes,” Chemsuschem 11, no. 18 (September 2018): 3276-3285, https://doi.org/10.1002/cssc.201801148.

[96]

J. Wang, J. Zhao, X. He, Y. Qiao, L. Li, and S.-L. Chou, “Hard Carbon Derived From Hazelnut Shell With Facile Hcl Treatment as High-Initial-Coulombic-Efficiency Anode for Sodium Ion Batteries,” Sustainable Materials and Technologies 33 (2022): e00446, https://doi.org/10.1016/j.susmat.2022.e00446.

[97]

X.-S. Wu, X.-L. Dong, B.-Y. Wang, J.-L. Xia, and W.-C. Li, “Revealing the Sodium Storage Behavior of Biomass-Derived Hard Carbon by Using Pure Lignin and Cellulose as Model Precursors,” Renewable Energy 189 (2022): 630-638, https://doi.org/10.1016/j.renene.2022.03.023.

[98]

X. Li, J. Sun, W. Zhao, Y. Lai, X. Yu, and Y. Liu, “Intergrowth of Graphite-Like Crystals In Hard Carbon for Highly Reversible Na-Ion Storage,” Advanced Functional Materials 32, no. 2 (2022): 2106980, https://doi.org/10.1002/adfm.202106980.

[99]

Mohit and S. A. Hashmi, “Hard Carbon Anode Derived From Pre-Treated Bio-Waste Sugarcane Bagasse for High Capacity Sodium-Ion Battery Fabricated With Bio-Defgradable Porous Polymer Electrolyte,” Journal of Energy Storage 83 (2024): 110694, https://doi.org/10.1016/j.est.2024.110694.

[100]

X. Zhang, X. Dong, X. Qiu, et al., “Extended Low-Voltage Plateau Capacity of Hard Carbon Spheres Anode for Sodium Ion Batteries,” Journal of Power Sources 476 (2020): 228550, https://doi.org/10.1016/j.jpowsour.2020.228550.

[101]

C. Wei, W. Dang, M. Li, X. Ma, M. Li, and Y. Zhang, “Hard-Soft Carbon Nanocomposite Prepared by Pyrolyzing Biomass and Coal Waste as Sodium-Ion Batteries Anode Material,” Materials Letters 330 (2023): 133368, https://doi.org/10.1016/j.matlet.2022.133368.

[102]

H. D. Asfaw, R. Gond, A. Kotronia, C.-W. Tai, and R. Younesi, “Bio-Derived Hard Carbon Nanosheets With High Rate Sodium-Ion Storage Characteristics,” Sustainable Materials and Technologies 32 (2022): e00407, https://doi.org/10.1016/j.susmat.2022.e00407.

[103]

S. Guo, Y. Chen, L. Tong, et al., “Biomass Hard Carbon of High Initial Coulombic Efficiency for Sodium-Ion Batteries: Preparation and Application,” Electrochimica Acta 410 (2022): 140017.

[104]

J. Zhao, X.-X He, W.-H. Lai, et al., “Catalytic Defect-Repairing Using Manganese Ions for Hard Carbon Anode With High-Capacity and High-Initial-Coulombic-Efficiency in Sodium-Ion Batteries,” Advanced Energy Materials 13, no. 18 (2023): 1-11, https://doi.org/10.1002/aenm.202300444.

[105]

H. Zhang, W. Zhang, H. Ming, et al., “Design Advanced Carbon Materials From Lignin-Based Interpenetrating Polymer Networks for High Performance Sodium-Ion Batteries,” Chemical Engineering Journal 341 (2018): 280-288, https://doi.org/10.1016/j.cej.2018.02.016.

[106]

T. Xu, X. Qiu, X. Zhang, and Y. Xia, “Regulation of Surface Oxygen Functional Groups and Pore Structure of Bamboo-Derived Hard Carbon for Enhanced Sodium Storage Performance,” Chemical Engineering Journal 452 (2023): 139514, https://doi.org/10.1016/j.cej.2022.139514.

[107]

Y. Zhang, N. Zhang, W. Chen, et al., “Effect of Vapor Carbon Coating on the Surface Structure and Sodium Storage Performance of Hard Carbon Spheres,” Energy Technology 7, no. 11 (2019): 1900779, https://doi.org/10.1002/ente.201900779.

[108]

F. Xie, Z. Xu, Z. Guo, et al., “Achieving High Initial Coulombic Efficiency for Competent Na Storage by Microstructure Tailoring From Chiral Nematic Nanocrystalline Cellulose,” Carbon Energy 4, no. 5 (2022): 914-923, https://doi.org/10.1002/cey2.198.

[109]

X. Zhao, Y. Ding, Q. Xu, X. Yu, Y. Liu, and H. Shen, “Low-Temperature Growth of Hard Carbon With Graphite Crystal for Sodium-Ion Storage With High Initial Coulombic Efficiency: A General Method,” Advanced Energy Materials 9, no. 10 (2019): 1-10, https://doi.org/10.1002/aenm.201803648.

[110]

H. Zhang, W. Zhang, and F. Huang, “Graphene Inducing Graphitization: Towards a Hard Carbon Anode With Ultrahigh Initial Coulombic Efficiency for Sodium Storage,” Chemical Engineering Journal 434 (2022): 134503, https://doi.org/10.1016/j.cej.2022.134503.

[111]

J. Jin, Z. Shi, and C. Wang, “Electrochemical Performance of Electrospun Carbon Nanofibers as Free-Standing and Binder-Free Anodes for Sodium-Ion and Lithium-Ion Batteries,” Electrochimica Acta 141 (2014): 302-310, https://doi.org/10.1016/j.electacta.2014.07.079.

[112]

P.-Y. Zhao, J. Zhang, Q. Li, and C.-Y. Wang, “Electrochemical Performance of Fulvic Acid-Based Electrospun Hard Carbon Nanofibers as Promising Anodes for Sodium-Ion Batteries,” Journal of Power Sources 334 (2016): 170-178, https://doi.org/10.1016/j.jpowsour.2016.10.029.

[113]

W. Zhong, D. Cheng, M. Zhang, et al., “Boosting Ultrafast and Durable Sodium Storage of Hard Carbon Electrode With Graphite Nanoribbons,” Carbon 198 (2022): 278-288, https://doi.org/10.1016/j.carbon.2022.07.033.

[114]

X.-Y. Wang, K. Y. Zhang, M. Y. Su, et al., “Coal-Derived Flaky Hard Carbon With Fast Na+ Transport Kinetic as Advanced Anode Material for Sodium-Ion Batteries,” Carbon 229 (2024): 119526, https://doi.org/10.1016/j.carbon.2024.119526.

[115]

K. Wang, F. Sun, H. Wang, et al., “Altering Thermal Transformation Pathway to Create Closed Pores in Coal-Derived Hard Carbon and Boosting of Na+ Plateau Storage for High-Performance Sodium-Ion Battery and Sodium-Ion Capacitor,” Advanced Functional Materials 32, no. 34 (2022): 2203725, https://doi.org/10.1002/adfm.202203725.

[116]

Y. Zhang, Z. Zhou, Q. Lin, et al., “Open Sesame: Tailoring the Microstructure of Biomass-Derived Hard Carbon for High-Efficiency Sodium-Ion Battery Anodes,” Chemical Engineering Journal 515 (2025): 163768, https://doi.org/10.1016/j.cej.2025.163768.

[117]

N. Sun, H. Liu, and B. Xu, “Facile Synthesis of High Performance Hard Carbon Anode Materials for Sodium Ion Batteries,” Journal of Materials Chemistry A 3, no. 41 (2015): 20560-20566, https://doi.org/10.1039/C5TA05118E.

[118]

C. Matei Ghimbeu, et al., “Review: Insights on Hard Carbon Materials for Sodium-Ion Batteries (SIBs): Synthesis-Properties-Performance Relationships,” Advanced Energy Materials 14, no. 19 (2024): 2303833, https://doi.org/10.1002/aenm.202303833.

[119]

Y. Qu, X. Lv, N. Qin, et al., “Mechanism of Ball Milling Pretreatment to Improve the Anaerobic Digestion Performance and Energy Conversion Efficiency of Corn Straw,” Fuel 366 (2024): 131409, https://doi.org/10.1016/j.fuel.2024.131409.

[120]

J. Xiang, L. Ma, Y. Sun, et al., “Ball-Milling-Assisted N/O Codoping for Enhanced Sodium Storage Performance of Coconut-Shell-Derived Hard Carbon Anodes in Sodium-Ion Batteries,” Langmuir 40, no. 45 (2024): 23853-23863, Nov., https://doi.org/10.1021/acs.langmuir.4c02868.

[121]

H. Wang, Q. Yuan, D. Wang, et al., “Disordered Surface Formation of WS2 via Hydrogen Plasma With Enhanced Anode Performances for Lithium and Sodium Ion Batteries,” Sustainable Energy & Fuels 3, no. 3 (2019): 865-874, https://doi.org/10.1039/C8SE00566D.

[122]

K. Kumar and R. Kundu, “Doping Engineering in Electrode Material for Boosting the Performance of Sodium Ion Batteries,” ACS Applied Materials & Interfaces 16, no. 29 (July 2024): 37346-37362, https://doi.org/10.1021/acsami.4c06305.

[123]

N. Qin, Y. Sun, C. Hu, et al., “Boosting High Initial Coulombic Efficiency of Hard Carbon by In-Situ Electrochemical Presodiation,” Journal of Energy Chemistry 77 (2023): 310-316, https://doi.org/10.1016/j.jechem.2022.10.032.

[124]

L. L. Driscoll, E. H. Driscoll, B. Dong, et al., “Under Pressure: Offering Fundamental Insight Into Structural Changes on Ball Milling Battery Materials,” Energy & Environmental Science 16, no. 11 (2023): 5196-5209, https://doi.org/10.1039/D3EE00249G.

[125]

Y. Huang, X. Li, J. Luo, et al., “Enhancing Sodium-Ion Storage Behaviors in TiNb2O7 by Mechanical Ball Milling,” ACS Applied Materials & Interfaces 9, no. 10 (2017): 8696-8703, https://doi.org/10.1021/acsami.6b15887.

[126]

C. F. Burmeister and A. Kwade, “Process Engineering With Planetary Ball Mills,” Chemical Society Reviews 42, no. 18 (2013): 7660-7667, https://doi.org/10.1039/C3CS35455E.

[127]

X. Wang, Q. Fang, T. Zheng, et al., “Enhancing Sodium-Ion Energy Storage of Commercial Activated Carbon by Constructing Closed Pores via Ball Milling,” Nanomaterials 14, no. 1 (2024): 65, https://doi.org/10.3390/nano14010065.

[128]

R. Yuan, Y. Dong, R. Hou, et al., “Structural Transformation of Porous and Disordered Carbon During Ball-Milling,” Chemical Engineering Journal 454 (2023): 140418, https://doi.org/10.1016/j.cej.2022.140418.

[129]

H. Lu, F. Ai, Y. Jia, et al., “Exploring Sodium-Ion Storage Mechanism in Hard Carbons With Different Microstructure Prepared by Ball-Milling Method,” Small 14, no. 39 (2018): 1802694, https://doi.org/10.1002/smll.201802694.

[130]

L. Larbi, B. Larhrib, L. Madec, C. Vaulot, L. Monconduit, and C. Matei Ghimbeu, “Impact of Milling Conditions on Hard and Soft Carbon Properties and Performance in Potassium-Ion Batteries,” ACS Applied Energy Materials 7, no. 8 (April 2024): 3378-3392, https://doi.org/10.1021/acsaem.4c00148.

[131]

H. Cheng, N. Garcia-Araez, and A. L. Hector, “Enhancing the Performance of Hard Carbon for Sodium-Ion Batteries by Coating With Silicon Nitride/Oxycarbide Nanoparticles,” Materials Advances 2, no. 24 (2021): 7956-7966, https://doi.org/10.1039/D1MA00613D.

[132]

L. Hu, G. Cheng, J. Ren, F. Wang, and J. Ren, “Conformal Carbon Coating on Hard Carbon Anode Derived From Propionaldehyde for Exellent Performance of Lithium-Ion Batteries,” International Journal of Electrochemical Science 14, no. 3 (2019): 2804-2814, https://doi.org/10.20964/2019.03.75.

[133]

H. Wang, H. Niu, K. Shu, et al., “Regulating the ‘Core-Shell’ Microstructure of Hard Carbon Through Sodium Hydroxide Activation for Achieving High-Capacity Sibs Anode,” Journal of Materials Science & Technology 209 (2025): 161-170, https://doi.org/10.1016/j.jmst.2024.05.009.

[134]

K. Palanisamy, S. Daboss, D. Schäfer, et al., “Spray-Coated Hard Carbon Composite Anodes for Sodium-Ion Insertion,” Batteries and Supercaps 7, no. 1 (2024): e202300402, https://doi.org/10.1002/batt.202300402.

[135]

S. Neuville and A. Matthews, “A Perspective on the Optimisation of Hard Carbon and Related Coatings for Engineering Applications,” Thin Solid Films 515, no. 17 (2007): 6619-6653, https://doi.org/10.1016/j.tsf.2007.02.011.

[136]

B. Dischler, A. Bubenzer, and P. Koidl, “Hard Carbon Coatings With Low Optical Absorption,” Applied Physics Letters 42, no. 8 (April 1983): 636-638, https://doi.org/10.1063/1.94056.

[137]

N. C. Ou, X. Su, D. C. Bock, and L. McElwee-White, “Precursors for Chemical Vapor Deposition of Tungsten Oxide and Molybdenum Oxide,” Coordination Chemistry Reviews 421 (2020): 213459, https://doi.org/10.1016/j.ccr.2020.213459.

[138]

Q. Li, X. Liu, Y. Tao, et al., “Sieving Carbons Promise Practical Anodes With Extensible Low-Potential Plateaus for Sodium Batteries,” National Science Review 9, no. 8 (August 2022): nwac084, https://doi.org/10.1093/nsr/nwac084.

[139]

L. Sun, G. Yaun, L. Gao, et al., “Chemical Vapour Deposition,” Nature Reviews Methods Primers 1, no. 1 (2021): 5, https://doi.org/10.1038/s43586-020-00005-y.

[140]

M. Casavola, L. M. Armstrong, Z. Zhu, et al., “Fluidized Bed Chemical Vapor Deposition on Hard Carbon Powders to Produce Composite Energy Materials,” ACS Omega 9, no. 11 (March 2024): 13447-13457, https://doi.org/10.1021/acsomega.4c00297.

[141]

M. Á. Muñoz-Márquez, D. Saurel, J. L. Gómez-Cámer, M. Casas-Cabanas, E. Castillo-Martínez, and T. Rojo, “Na-Ion Batteries for Large Scale Applications: A Review on Anode Materials and Solid Electrolyte Interphase Formation,” Advanced Energy Materials 7, no. 20 (2017): 1700463, https://doi.org/10.1002/aenm.201700463.

[142]

K. Chayambuka, G. Mulder, D. L. Danilov, and P. H. L. Notten, “Sodium-Ion Battery Materials and Electrochemical Properties Reviewed,” Advanced Energy Materials 8, no. 16 (2018): 1800079, https://doi.org/10.1002/aenm.201800079.

[143]

T. K. Kumaresan, S. A. Masilamani, K. Raman, S. Z. Karazhanov, and R. Subashchandrabose, “High Performance Sodium-Ion Battery Anode Using Biomass Derived Hard Carbon With Engineered Defective Sites,” Electrochimica Acta 368 (2021): 137574, https://doi.org/10.1016/j.electacta.2020.137574.

[144]

J. Ding, H. Wang, Z. Li, et al., “Carbon Nanosheet Frameworks Derived From Peat Moss as High Performance Sodium Ion Battery Anodes,” ACS Nano 7, no. 12 (December 2013): 11004-11015, https://doi.org/10.1021/nn404640c.

[145]

A. Pozio, A. Aurora, and P. P. Prosini, “Hard Carbon for Sodium Batteries: Wood Precursors and Activation With First Group Hydroxide,” Journal of Power Sources 449 (2020): 227555, https://doi.org/10.1016/j.jpowsour.2019.227555.

[146]

M. Lee, G.-C. Kim, and S.-M. Paek, “Chemically Pre-Lithiated/Sodiated Reduced Graphene Oxide-Antimony Oxide Composites for High-Rate Capability and Long-Term Cycling Stability In Lithium and Sodium-Ion Batteries,” Sustainable Energy & Fuels 9, no. 8 (2025): 1998-2013, https://doi.org/10.1039/D5SE00172B.

[147]

F. Xie, Z. Xu, Z. Guo, et al., “Disordered Carbon Anodes for Na-Ion Batteries—Quo Vadis?,” Science China Chemistry 64, no. 10 (2021): 1679-1692, https://doi.org/10.1007/s11426-021-1074-8.

[148]

Y. Zhu, M. Chen, Q. Li, C. Yuan, and C. Wang, “A Porous Biomass-Derived Anode for High-Performance Sodium-Ion Batteries,” Carbon 129 (2018): 695-701, https://doi.org/10.1016/j.carbon.2017.12.103.

[149]

J.-Y. Cheng, Z. L. Yi, Z. B. Wang, et al., “Towards Optimized Li-Ion Storage Performance: Insight on the Oxygen Species Evolution of Hard Carbon by H2 Reduction,” Electrochimica Acta 337 (2020): 135736, https://doi.org/10.1016/j.electacta.2020.135736.

[150]

G. Ding, Z. Li, L. Wei, et al., “Regulating the Sodium Storage Sites in Nitrogen-Doped Carbon Materials by Sulfur-Doping Engineering for Sodium Ion Batteries,” Electrochimica Acta 424, (May 2022): 140645, https://doi.org/10.1016/j.electacta.2022.140645.

[151]

Y. Zhou, Y. Wang, C. Fu, et al., “Tailoring Pseudo-Graphitic Domain by Molybdenum Modification to Boost Sodium Storage Capacity and Durability for Hard Carbon,” Small 20, no. 48 (2024): 2405921, https://doi.org/10.1002/smll.202405921.

[152]

J. Wang, H. Cheng, X. Zhang, and B. Wang, “Nitrogen and Phosphorus Co-Doped Hard Carbon Materials as High-Performance Anode for Sodium Ion Batteries,” Journal of Electrochemical Energy Conversion and Storage 22, no. 3 (2025): 031013, https://doi.org/10.1115/1.4066634.

[153]

S. Wu, H. Peng, J. Xu, et al., “Nitrogen/Phosphorus Co-Doped Ultramicropores Hard Carbon Spheres for Rapid Sodium Storage,” Carbon 218 (2024): 118756, https://doi.org/10.1016/j.carbon.2023.118756.

[154]

M. Liu, J. Zhang, S. Guo, et al., “Chemically Presodiated Hard Carbon Anodes With Enhanced Initial Coulombic Efficiencies for High-Energy Sodium Ion Batteries,” ACS Applied Materials & Interfaces 12, no. 15 (2020): 17620-17627, https://doi.org/10.1021/acsami.0c02230.

[155]

H. Alptekin, H. Au, A. Jensen, et al., “Sodium Storage Mechanism Investigations Through Structural Changes in Hard Carbons,” ACS Applied Energy Materials 3, no. 10 (October 2020): 9918-9927, https://doi.org/10.1021/acsaem.0c01614.

[156]

D. Sun, B. Luo, H. Wang, Y. Tang, X. Ji, and L. Wang, “Engineering the Trap Effect of Residual Oxygen Atoms and Defects in Hard Carbon Anode Towards High Initial Coulombic Efficiency,” Nano Energy 64 (2019): 103937, https://doi.org/10.1016/j.nanoen.2019.103937.

[157]

D. Sun, L. Zhao, P. Sun, et al., “Rationally Regulating Closed Pore Structures by Pitch Coating to Boost Sodium Storage Performance of Hard Carbon in Low-Voltage Platforms,” Advanced Functional Materials 34, no. 40 (2024): 2403642, https://doi.org/10.1002/adfm.202403642.

[158]

E. Memarzadeh Lotfabad, P. Kalisvaart, A. Kohandehghan, D. Karpuzov, and D. Mitlin, “Origin of Non-SEI Related Coulombic Efficiency Loss in Carbons Tested Against Na and Li,” Journal of Materials Chemistry A 2, no. 46 (2014): 19685-19695, https://doi.org/10.1039/C4TA04995K.

[159]

H. Wang, H. Chen, C. Chen, et al., “Tea-Derived Carbon Materials as Anode for High-Performance Sodium Ion Batteries,” Chinese Chemical Letters 34, no. 4 (2023): 107465, https://doi.org/10.1016/j.cclet.2022.04.063.

[160]

B. Wan, H. Zhang, S. Tang, et al., “High-Sulfur-Doped Hard Carbon for Sodium-Ion Battery Anodes With Large Capacity and High Initial Coulombic Efficiency,” Sustainable Energy & Fuels 6, no. 18 (2022): 4338-4345, https://doi.org/10.1039/D2SE00937D.

[161]

Q. Jin, K. Wang, P. Feng, Z. Zhang, S. Cheng, and K. Jiang, “Surface-Dominated Storage of Heteroatoms-Doping Hard Carbon for Sodium-Ion Batteries,” Energy Storage Materials 27 (2020): 43-50, https://doi.org/10.1016/j.ensm.2020.01.014.

[162]

Y. Lu, C. Zhao, X. Qi, et al., “Pre-Oxidation-Tuned Microstructures of Carbon Anodes Derived From Pitch for Enhancing Na Storage Performance,” Advanced Energy Materials 8, no. 27 (2018): 1800108, https://doi.org/10.1002/aenm.201800108.

[163]

Z. Zhou, Z. Wang, Y. Zhang, Q. Lin, Y. Shuai, and L. Fan, “Rational Design of Hard Carbon Anodes for Sodium-Ion Batteries: Precursor Engineering, Structural Modulation and Industrial Scalability,” Energy Storage Materials 80 (2025): 104443, https://doi.org/10.1016/j.ensm.2025.104443.

RIGHTS & PERMISSIONS

2025 The Author(s). Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

164

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/