Kinetically Engineered Lithiophilic Dual-Metal Layers for Dendrite-Free, High-Energy Anode-Less All-Solid-State Batteries

Jihoon Oh , Taegeun Lee , Nohjoon Lee , Yeeun Sohn , Ji Young Kim , Ki Yoon Bae , Seung Ho Choi , Jang Wook Choi

Battery Energy ›› 2025, Vol. 4 ›› Issue (6) : e70038

PDF
Battery Energy ›› 2025, Vol. 4 ›› Issue (6) : e70038 DOI: 10.1002/bte2.20250035
RESEARCH ARTICLE

Kinetically Engineered Lithiophilic Dual-Metal Layers for Dendrite-Free, High-Energy Anode-Less All-Solid-State Batteries

Author information +
History +
PDF

Abstract

Anode-less all-solid-state batteries (ASSBs) are emerging as promising candidates for next-generation energy storage, offering exceptional energy density, inherent safety, and streamlined manufacturability. However, their widespread adoption is hindered by the risk of internal short-circuiting stemming from the uncontrolled propagation of lithium (Li) dendrites, especially during high-current operation. This study introduces a nanoscale dual-layer lithiophilic architecture for the anode-less electrode—a gold (Au) film as the outer layer with a magnesium (Mg) layer underneath—to address this challenge. By exploiting the divergent electrochemical kinetics of these metals, Li nucleation is selectively confined to the underlying Mg layer, while the Au overlayer serves as a conformal barrier to mitigate dendrite penetration. The engineered interface enabled stable cycling with 81.4% capacity retention after 100 cycles at a high current density of 3.5 mA cm−2 and room temperature (25°C), alongside robust operation in a pouch-cell configuration under a modest stack pressure of 4 MPa. These findings highlight the strategic importance of dual-metal lithiophilic designs with the ability to synergistically tailor the nucleation dynamics, as a scalable pathway for practical anode-less ASSBs.

Keywords

all-solid-state battery / anode-less / intermetallic alloy / lithiohpilicity / solid-solution

Cite this article

Download citation ▾
Jihoon Oh, Taegeun Lee, Nohjoon Lee, Yeeun Sohn, Ji Young Kim, Ki Yoon Bae, Seung Ho Choi, Jang Wook Choi. Kinetically Engineered Lithiophilic Dual-Metal Layers for Dendrite-Free, High-Energy Anode-Less All-Solid-State Batteries. Battery Energy, 2025, 4(6): e70038 DOI:10.1002/bte2.20250035

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

a) T. Schmaltz, F. Hartmann, T. Wicke, L. Weymann, C. Neef, and J. Janek, “A Roadmap for Solid-State Batteries,” Advanced Energy Materials 13 (2023): 2301886 b)R. Chen, Q. Li, X. Yu, L. Chen, and H. Li, “Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces,” Chemical Reviews 120 (2020): 6820–2306877 c) Z. Zhang, Y. Shao, B. Lotsch, et al., “New Horizons for Inorganic Solid State Ion Conductors,” Energy & Environmental Science 11 (2018): 1945–1976 d) J. Janek and W. G. Zeier, “A Solid Future for Battery Development,” Nature Energy 1 (2016): 16141 e) J. Oh, S. H. Choi, H. Kim, et al., “Lithio-Amphiphilic Nanobilayer for High Energy Density Anode-Less All-Solid-State Batteries Operating Under Low Stack Pressure,” Energy & Environmental Science 17 (2024): 7932–7943 f) I. Kim, H. Kim, S. An, J. Oh, M. Kim, and J. W. Choi, “Degradation Path Prediction of Lithium-Ion Batteries Under Dynamic Operating Sequences,” Energy & Environmental Science 18 (2025): 3784–3794.

[2]

a) F. Zheng, M. Kotobuki, S. Song, M. O. Lai, and L. Lu, “Review on Solid Electrolytes for All-Solid-State Lithium-Ion Batteries,” Journal of Power Sources 389 (2018): 198-213 b) M. Armand and J. M. Tarascon, “Building Better Batteries,” Nature 451 (2008): 652–657 c) J. M. Tarascon and M. Armand, “Issues and Challenges Facing Rechargeable Lithium Batteries,” Nature 414 (2001): 359–367.

[3]

a) L. Zhou, N. Minafra, W. G. Zeier, and L. F. Nazar, “Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries,” Accounts of Chemical Research 54 (2021): 2717 b) H. J. Deiseroth, S. T. Kong, H. Eckert, et al., “Li6PS5X: A Class of Crystalline Li-Rich Solids With an Unusually High Li+ Mobility,” Angewandte Chemie International Edition 47 (2008): 755 c) C. Yu, F. Zhao, J. Luo, L. Zhang, and X. Sun, “Recent Development of Lithium Argyrodite Solid-State Electrolytes for Solid-State Batteries: Synthesis, Structure, Stability and Dynamics,” Nano Energy 83 (2021): 105858 d) R. C. Xu, X. L. Wang, S. Z. Zhang, et al., “Rational Coating of Li7P3S11 Solid Electrolyte on MoS2 Electrode for All-Solid-State Lithium Ion Batteries,” Journal of Power Sources 374 (2018): 107 e) N. Kamaya, K. Homma, Y. Yamakawa, et al., “A Lithium Superionic Conductor,” Nature Materials 10 (2011): 682 f) Y. Kato, S. Hori, T. Saito, et al., “High-Power All-Solid-State Batteries Using Sulfide Superionic Conductors,” Nature Energy 1 (2016): 16030.

[4]

a) J. Gu, Z. Liang, J. Shi, and Y. Yang, “Electrochemo-Mechanical Stresses and Their Measurements in Sulfide-Based All-Solid-State Batteries: A Review,” Advanced Energy Materials 13 (2023): 2203153 b) K. Chen, Y. Shen, Y. Zhang, Y. Lin, and C.-W. Nan, “High Capacity and Cyclic Performance in a Three-Dimensional Composite Electrode Filled With Inorganic Solid Electrolyte,” Journal of Power Sources 249 (2014): 306–2203310 c) L. Li, H. Duan, J. Li, L. Zhang, Y. Deng, and G. Chen, “Toward High Performance All-Solid-State Lithium Batteries With High-Voltage Cathode Materials: Design Strategies for Solid Electrolytes, Cathode Interfaces, and Composite Electrodes,” Advanced Energy Materials 11 (2021): 2003154.

[5]

a) Z. Zhang, J. Wang, Y. Jin, G. Liu, S. Yang, and X. Yao, “Insights on Lithium Plating Behavior in Graphite-Based All-Solid-State Lithium-Ion Batteries,” Energy Storage Materials 54 (2023): 845-853 b) X. Xing, Y. Li, S. Wang, et al., “Graphite-Based Lithium-Free 3D Hybrid Anodes for High Energy Density All-Solid-State Batteries,” ACS Energy Letters 6 (2021): 1831–1838.

[6]

a) T. Lee, M. J. Seong, H. C. Ahn, et al., “Fast-Chargeable Lithium-Ion Batteries by μ-Si Anode-Tailored Full-Cell Design,” Proceedings of the National Academy of Sciences 122 (2025): e2417053121 b) D. H. S. Tan, Y.-T. Chen, H. Yang, et al., “Carbon-Free High-Loading Silicon Anodes Enabled by Sulfide Solid Electrolytes,” Science 373 (2021): 1494.

[7]

a) H. Duan, M. Fan, W.-P. Chen, et al., “Extended Electrochemical Window of Solid Electrolytes via Heterogeneous Multilayered Structure for High-Voltage Lithium Metal Batteries,” Advanced Materials 31 (2019): 1807789 b) T. K. Schwietert, V. A. Arszelewska, C. Wang, et al., “Clarifying the Relationship Between Redox Activity and Electrochemical Stability in Solid Electrolytes,” Nature Materials 19 (2020): 428–435 c) J.-C. Wang, L.-L. Zhao, N. Zhang, P.-F. Wang, and T.-F. Yi, “Interfacial Stability Between Sulfide Solid Electrolytes and Lithium Anodes: Challenges, Strategies and Perspectives,” Nano Energy 123 (2024): 109361 d) Y. Nikodimos, C.-J. Huang, B. W. Taklu, W.-N. Su, and B. J. Hwang, “Chemical Stability of Sulfide Solid-State Electrolytes: Stability Toward Humid Air and Compatibility With Solvents and Binders,” Energy & Environmental Science 15 (2022): 991–1033.

[8]

a) L. Braks, J. Zhang, A. Forster, et al., “Interfacial Stabilization by Prelithiated Trithiocyanuric Acid as an Organic Additive in Sulfide-Based All-Solid-State Lithium Metal Batteries,” Angewandte Chemie International Edition 63 (2024): e202408238 b) Y. Wei, Z. Li, Z. Chen, et al., “Polymeric Electronic Shielding Layer Enabling Superior Dendrite Suppression for All-Solid-State Lithium Batteries,” ACS Nano 18 (2024): 5965 c) H. Lim, S. Jun, Y. B. Song, et al., “Rationally Designed Conversion-Type Lithium Metal Protective Layer for All-Solid-State Lithium Metal Batteries,” Advanced Energy Materials 14 (2024): 2303762.

[9]

a) N. Lee, J. Oh, and J. W. Choi, “Anode-Less All-Solid-State Batteries: Recent Advances and Future Outlook,” Materials Futures 2 (2023): 013502 b) W.-Z. Huang, C.-Z. Zhao, P. Wu, et al., “Anode-Free Solid-State Lithium Batteries: A Review,” Advanced Energy Materials 12 (2022): 2201044 c) P. Molaiyan, M. Abdollahifar, B. Boz, et al., “Optimizing Current Collector Interfaces for Efficient ‘Anode-Free’ Lithium Metal Batteries,” Advanced Functional Materials 34 (2024): 2311301 d) S. Liu, K. Jiao, and J. Yan, “Prospective Strategies for Extending Long-Term Cycling Performance of Anode-Free Lithium Metal Batteries,” Energy Storage Materials 54 (2023): 689 e) L. Ma, Y. Dong, N. Li, et al., “Current Challenges and Progress in Anode/Electrolyte Interfaces of All-Solid-State Lithium Batteries,” eTransportation 20 (2024): 100312 f) X.-T. Wang, Z.-Y. Gu, E. H. Ang, X.-X. Zhao, X.-L. Wu, and Y. Liu, “Prospects for Managing End-of-Life Lithium-Ion Batteries: Present and Future,” Interdisciplinary Materials 1 (2022): 417.

[10]

a) C. Wang, D. Han, J. Wang, et al., “Dimension Control of In Situ Fabricated CsPbClBr2 Nanocrystal Films Toward Efficient Blue Light-Emitting Diodes,” Nature Communications 11 (2020): 5201 b) A. J. Louli, A. Eldesoky, R. Weber, et al., “Diagnosing and Correcting Anode-Free Cell Failure via Electrolyte and Morphological Analysis,” Nature Energy 5 (2020): 693.

[11]

a) J. Oh, W. J. Chung, S. H. Jung, et al., “Critical Impact of Volume Changes in Sulfide-Based All-Solid-State Batteries Operating Under Practical Conditions,” Energy Storage Materials 71 (2024): 103606 b) S. Pyo, S. Ryu, Y. J. Gong, et al., “Lithiophilic Wetting Agent Inducing Interfacial Fluorination for Long-Lifespan Anode-Free Lithium Metal Batteries,” Advanced Energy Materials 13 (2023): 2203573 c) J. Kim, G. R. Lee, R. B. K. Chung, P. J. Kim, and J. Choi, “Homogeneous Li Deposition Guided by Ultra-Thin Lithiophilic Layer for Highly Stable Anode-Free Batteries,” Energy Storage Materials 61 (2023): 102899 d) W. Wu, D. Ning, J. Zhang, et al., “Ultralight Lithiophilic Three-Dimensional Lithium Host for Stable High-Energy-Density Anode-Free Lithium Metal Batteries,” Energy Storage Materials 63 (2023): 102974.

[12]

a) Y. Sohn, J. Oh, J. Lee, et al., “Dual-Seed Strategy for High-Performance Anode-Less All-Solid-State Batteries,” Advanced Materials 36 (2024): 2407443 b) Z. T. Wondimkun, W. A. Tegegne, J. Shi-Kai, et al., “Highly-Lithiophilic Ag@PDA-GO Film to Suppress Dendrite Formation on Cu Substrate in Anode-Free Lithium Metal Batteries,” Energy Storage Materials 35 (2021): 334 c) J. Y. Kim, O. B. Chae, G. Kim, A. A. Peterson, M. Wu, and H.-T. Jung, “Long-Range Uniform Deposition of Ag Nanoseed on Cu Current Collector for High-Performance Lithium Metal Batteries,” Small 20 (2024): 2307200.

[13]

a) J. Oh, D. Kwon, S. H. Choi, et al., “All-Solid-State Batteries With Extremely Low N/P Ratio Operating at Low Stack Pressure,” Advanced Energy Materials 15 (2025): 2404817 b) Y. Liu, S. Xiong, J. Wang, et al., “Dendrite-Free Lithium Metal Anode Enabled by Separator Engineering via Uniform Loading of Lithiophilic Nucleation Sites,” Energy Storage Materials 19 (2019): 24–2404830.

[14]

Z. Zhang, H. Luo, Z. Liu, S. Wang, X. Zhou, and Z. Liu, “A Chemical Lithiation Induced Li4.4Sn Lithiophilic Layer for Anode-Free Lithium Metal Batteries,” Journal of Materials Chemistry A 10 (2022): 9670-9679.

[15]

S. Li, Y. Huang, W. Ren, X. Li, M. Wang, and H. Cao, “Stabilize Lithium Metal Anode Through In-Situ Forming a Multi-Component Composite Protective Layer,” Chemical Engineering Journal 422 (2021): 129911.

[16]

a) N. Suzuki, N. Yashiro, S. Fujiki, et al., “Highly Cyclable All-Solid-State Battery With Deposition-Type Lithium Metal Anode Based on Thin Carbon Black Layer,” Advanced Energy Sustainability Research 2 (2021): 2100066 b) Y.-G. Lee, S. Fujiki, C. Jung, et al., “High-Energy Long-Cycling All-Solid-State Lithium Metal Batteries Enabled by Silver–Carbon Composite Anodes,” Nature Energy 5 (2020): 299 c) J. Oh, S. H. Choi, B. Chang, et al., “Elastic Binder for High-Performance Sulfide-Based All-Solid-State Batteries,” ACS Energy Letters 7 (2022): 1374.

[17]

J. Lee, S. H. Choi, G. Im, et al., “Room-Temperature Anode-Less All-Solid-State Batteries via the Conversion Reaction of Metal Fluorides,” Advanced Materials 34 (2022): 2203580.

[18]

J. Oh, S. H. Choi, J. Y. Kim, et al., “Anode-Less All-Solid-State Batteries Operating at Room Temperature and Low Pressure,” Advanced Energy Materials 13 (2023): 2301508.

[19]

H. J. Choi, D. W. Kang, J.-W. Park, et al., “In Situ Formed Ag-Li Intermetallic Layer for Stable Cycling of All-Solid-State Lithium Batteries,” Advanced Science 9 (2022): 2103826.

[20]

a) P. Nithyadharseni, M. V. Reddy, B. Nalini, M. Kalpana, and B. V. R. Chowdari, “Sn-Based Intermetallic Alloy Anode Materials for the Application of Lithium Ion Batteries,” Electrochimica Acta 161 (2015): 261-268 b) S. Jin, Y. Ye, Y. Niu, et al., “Solid–Solution-Based Metal Alloy Phase for Highly Reversible Lithium Metal Anode,” Journal of the American Chemical Society 142 (2020): 8818–8826 c) S. Zhang, G. Yang, Z. Liu, et al., “Phase Diagram Determined Lithium Plating/Stripping Behaviors on Lithiophilic Substrates,” ACS Energy Letters 6 (2021): 4118–4126.

[21]

a) J. A. Lewis, K. A. Cavallaro, Y. Liu, and M. T. McDowell, “The Promise of Alloy Anodes for Solid-State Batteries,” Joule 6 (2022): 1418-1430 b) M. Siniscalchi, J. Liu, J. S. Gibson, et al., “On the Relative Importance of Li Bulk Diffusivity and Interface Morphology in Determining the Stripped Capacity of Metallic Anodes in Solid-State Batteries,” ACS Energy Letters 7 (2022): 3593–3599 c) Y. Ye, H. Xie, Y. Yang, et al., “Solid-Solution or Intermetallic Compounds: Phase Dependence of the Li-Alloying Reactions for Li-Metal Batteries,” Journal of the American Chemical Society 145 (2023): 24775.

[22]

a) S. H. Park, D. Jun, G. H. Lee, et al., “Designing 3D Anode Based on Pore-Size-Dependent Li Deposition Behavior for Reversible Li-Free All-Solid-State Batteries,” Advanced Science 9 (2022): 2203130 b) Y. Wang, Y. Liu, M. Nguyen, et al., “Stable Anode-Free All-Solid-State Lithium Battery Through Tuned Metal Wetting on the Copper Current Collector,” Advanced Materials 35 (2023): 2206762.

[23]

a) K. Yan, Z. Lu, H.-W. Lee, et al., “Selective Deposition and Stable Encapsulation of Lithium Through Heterogeneous Seeded Growth,” Nature Energy 1 (2016): 16010 b) P. Bach, M. Stratmann, I. Valencia-Jaime, A. H. Romero, and F. U. Renner, “Lithiation and Delithiation Mechanisms of Gold Thin Film Model Anodes for Lithium Ion Batteries: Electrochemical Characterization,” Electrochimica Acta 164 (2015): 81.

[24]

H. Asano, J. Liu, K. Ueno, et al., “Enhancing the Reversibility of Li Deposition/Dissolution in Sulfur Batteries Using High-Concentration Electrolytes to Develop Anode-Less Batteries With Lithium Sulfide Cathode,” Journal of Power Sources 554 (2023): 232323.

[25]

M. J. Counihan, K. S. Chavan, P. Barai, et al., “The Phantom Menace of Dynamic Soft-Shorts in Solid-State Battery Research,” Joule 8 (2024): 64-90.

[26]

J. Song, “Two- and Three-Electrode Impedance Spectroscopy of Lithium-Ion Batteries,” Journal of Power Sources 111 (2002): 255-267.

[27]

a) S. Hori, R. Kanno, X. Sun, et al., “Understanding the Impedance Spectra of All-Solid-State Lithium Battery Cells With Sulfide Superionic Conductors,” Journal of Power Sources 556 (2023): 232450 b) N. Lee, J. Lee, T. Lee, et al., “Rationally Designed Solution-Processible Conductive Carbon Additive Coating for Sulfide-Based All-Solid-State Batteries,” ACS Applied Materials & Interfaces 15 (2023): 34931.

[28]

P. Vadhva, J. Hu, M. J. Johnson, et al., “Electrochemical Impedance Spectroscopy for All-Solid-State Batteries: Theory, Methods and Future Outlook,” ChemElectroChem 8 (2021): 1930-1947.

[29]

W. Zhang, D. Schröder, T. Arlt, et al., “Electro)Chemical Expansion During Cycling: Monitoring the Pressure Changes in Operating Solid-State Lithium Batteries,” Journal of Materials Chemistry A 5 (2017): 9929-9936.

[30]

a) J. A. Lewis, C. Lee, Y. Liu, et al., “Role of Areal Capacity in Determining Short Circuiting of Sulfide-Based Solid-State Batteries,” ACS Applied Materials & Interfaces 14 (2022): 4051 b) Y. Lu, C.-Z. Zhao, H. Yuan, X.-B. Cheng, J.-Q. Huang, and Q. Zhang, “Critical Current Density in Solid-State Lithium Metal Batteries: Mechanism, Influences, and Strategies,” Advanced Functional Materials 31 (2021): 2009925 c) J. Peng, D. Wu, F. Song, et al., “High Current Density and Long Cycle Life Enabled by Sulfide Solid Electrolyte and Dendrite-Free Liquid Lithium Anode,” Advanced Functional Materials 32 (2022): 2105776.

[31]

a) T. Asakura, T. Inaoka, C. Hotehama, et al., “Stack Pressure Dependence of Li Stripping/Plating Performance in All-Solid-State Li Metal Cells Containing Sulfide Glass Electrolytes,” ACS Applied Materials & Interfaces 15 (2023): 31403 b) J.-M. Doux, Y. Yang, D. H. S. Tan, et al., “Pressure Effects on Sulfide Electrolytes for All Solid-State Batteries,” Journal of Materials Chemistry A 8 (2020): 5049 c) C. Hänsel and D. Kundu, “The Stack Pressure Dilemma in Sulfide Electrolyte Based Li Metal Solid-State Batteries: A Case Study With Li6PS5Cl Solid Electrolyte,” Advanced Material Interfaces 8 (2021): 2100206 d) Y. Wang, T. Liu, and J. Kumar, “Effect of Pressure on Lithium Metal Deposition and Stripping Against Sulfide-Based Solid Electrolytes,” ACS Applied Materials Interfaces 12 (2020): 34771.

RIGHTS & PERMISSIONS

2025 The Author(s). Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

69

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/