Bismuth Vanadate as a Multifunctional Material for Advanced Energy Storage Systems

Deepak Rajaram Patil , Shrikant Sadavar , Abhishek Amar Kulkarni , Kiyoung Lee , Deepak Dubal

Battery Energy ›› 2025, Vol. 4 ›› Issue (6) : e70046

PDF
Battery Energy ›› 2025, Vol. 4 ›› Issue (6) : e70046 DOI: 10.1002/bte2.20250028
REVIEW

Bismuth Vanadate as a Multifunctional Material for Advanced Energy Storage Systems

Author information +
History +
PDF

Abstract

The increasing reliance on renewable energy sources, electric vehicles, and portable electronics has intensified the demand for advanced energy storage systems that are both efficient and sustainable. Among the critical components of these systems, electrode materials play a pivotal role in determining performance. In this context, bismuth vanadate (BVO) has emerged as a highly promising material, thanks to its distinctive structural and electrochemical properties. BVO offers immense potential across various energy storage technologies, including lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), zinc-ion batteries (ZIBs) and supercapacitors. Its unique characteristics, such as efficient ion intercalation and robust battery-like behavior, position it as an ideal candidate for next-generation devices. Recent advances in morphological optimization have further enhanced the specific capacitance and cycling stability of BVO-based materials, paving the way for significant progress in energy storage technology. Furthermore, innovative approaches, such as leveraging BVO's photocatalytic capabilities in ZIBs, offer a cost-effective and environmentally friendly route to energy storage. This review highlights the transformative potential of BVO as an electrode material, emphasizing its role in addressing the pressing need for energy storage technologies that support clean and renewable energy initiatives. Through detailed exploration, it underscores the adaptability and promise of BVO in shaping the future of sustainable energy solutions.

Keywords

batteries / Bismuth vanadate / energy storage / supercapacitor

Cite this article

Download citation ▾
Deepak Rajaram Patil, Shrikant Sadavar, Abhishek Amar Kulkarni, Kiyoung Lee, Deepak Dubal. Bismuth Vanadate as a Multifunctional Material for Advanced Energy Storage Systems. Battery Energy, 2025, 4(6): e70046 DOI:10.1002/bte2.20250028

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Armand and J. M. Tarascon, “Building Better Batteries,” Nature 451 (2008): 652-657.

[2]

B. Dunn, H. Kamath, and J. M. Tarascon, “Electrical Energy Storage for the Grid: A Battery of Choices,” Science 334 (2011): 928-935.

[3]

D. M. Davies, M. G. Verde, O. Mnyshenko, et al., “Combined Economic and Technological Evaluation of Battery Energy Storage for Grid Applications,” Nature Energy 4 (2018): 42-50.

[4]

W. Li, B. Song, and A. Manthiram, “High-Voltage Positive Electrode Materials for Lithium-Ion Batteries,” Chemical Society Reviews 46 (2017): 3006-3059.

[5]

M. Li, J. Lu, Z. Chen, and K. Amine, “30 Years of Lithium-Ion Batteries,” Advanced Materials 30 (2018): 1800561.

[6]

S. Jayakumar, P. C. Santhosh, M. M. Mohideen, and A. V. Radhamani, “A Comprehensive Review of Metal Oxides (RuO2, Co3O4, MnO2 and NiO) for Supercapacitor Applications and Global Market Trends,” Journal of Alloys and Compounds 976 (2024): 173170.

[7]

S. G. Hwang, S. H. Ryu, S. R. Yun, J. M. Ko, K. M. Kim, and K. S. Ryu, “Behavior of NiO-MnO2/MWCNT Composites for Use in a Supercapacitor,” Materials Chemistry and Physics 130 (2011): 507-512.

[8]

D. Gong, J. Zhu, and B. Lu, “RuO2@Co3O4 Heterogeneous Nanofibers: A High-Performance Electrode Material for Supercapacitors,” RSC Advances 6 (2016): 49173-49178.

[9]

F. Zhang, C. Yuan, X. Lu, L. Zhang, Q. Che, and X. Zhang, “Facile Growth of Mesoporous Co3O4 Nanowire Arrays on Ni Foam for High Performance Electrochemical Capacitors,” Journal of Power Sources 203 (2012): 250-256.

[10]

X.-J. Ma, W.-B. Zhang, L.-B. Kong, Y.-C. Luo, and L. Kang, “VO2: From Negative Electrode Material to Symmetric Electrochemical Capacitor,” RSC Advances 5 (2015): 97239-97247.

[11]

V. Ganesh, S. Pitchumani, and V. Lakshminarayanan, “New Symmetric and Asymmetric Supercapacitors Based on High Surface Area Porous Nickel and Activated Carbon,” Journal of Power Sources 158 (2006): 1523-1532.

[12]

P. Nagaraju, A. Alsalme, A. Alswieleh, and R. Jayavel, “Facile In-Situ Microwave Irradiation Synthesis of TiO2/Graphene Nanocomposite for High-Performance Supercapacitor Applications,” Journal of Electroanalytical Chemistry 808 (2018): 90-100.

[13]

X. Zhang, W. Shi, J. Zhu, et al., “High-Power and High-Energy-Density Flexible Pseudocapacitor Electrodes Made From Porous CuO Nanobelts and Single-Walled Carbon Nanotubes,” ACS Nano 5 (2011): 2013-2019.

[14]

S. Chen, J. Zhu, X. Wu, Q. Han, and X. Wang, “Graphene Oxide−MnO2 Nanocomposites for Supercapacitors,” ACS Nano 4 (2010): 2822-2830.

[15]

R. K. Selvan, I. Perelshtein, N. Perkas, and A. Gedanken, “Synthesis of Hexagonal-Shaped SnO2 Nanocrystals and SnO2@C Nanocomposites for Electrochemical Redox Supercapacitors,” Journal of Physical Chemistry C 112 (2008): 1825-1830.

[16]

G. Anandha Babu, G. Ravi, T. Mahalingam, M. Kumaresavanji, and Y. Hayakawa, “Influence of Microwave Power on the Preparation of NiO Nanoflakes for Enhanced Magnetic and Supercapacitor Applications,” Dalton Transactions 44 (2015): 4485-4497.

[17]

X. Li, J. Shao, J. Li, L. Zhang, Q. Qu, and H. Zheng, “Ordered Mesoporous MoO2 as a High-Performance Anode Material for Aqueous Supercapacitors,” Journal of Power Sources 237 (2013): 80-83.

[18]

S. D. Perera, B. Patel, J. Bonso, M. Grunewald, J. P. Ferraris, and K. J. Balkus, “Vanadium Oxide Nanotube Spherical Clusters Prepared on Carbon Fabrics for Energy Storage Applications,” ACS Applied Materials & Interfaces 3 (2011): 4512-4517.

[19]

S. X. Wang, C. C. Jin, and W. J. Qian, “Bi2O3 With Activated Carbon Composite as a Supercapacitor Electrode,” Journal of Alloys and Compounds 615 (2014): 12-17.

[20]

L. Deng, J. Liu, Z. Ma, G. Fan, and Z. Liu, “Free-Standing Graphene/Bismuth Vanadate Monolith Composite as a Binder-Free Electrode for Symmetrical Supercapacitors,” RSC Advances 8 (2018): 24796-24804.

[21]

S. Dutta, S. Pal, and S. De, “Hydrothermally Synthesized BiVO4-reduced Graphene Oxide Nanocomposite as a High Performance Supercapacitor Electrode With Excellent Cycle Stability,” New Journal of Chemistry 42 (2018): 10161-10166.

[22]

V. D. Nithya, R. Kalai Selvan, D. Kalpana, L. Vasylechko, and C. Sanjeeviraja, “Synthesis of Bi2WO6 Nanoparticles and Its Electrochemical Properties in Different Electrolytes for Pseudocapacitor Electrodes,” Electrochimica Acta 109 (2013): 720-731.

[23]

V. D. Nithya, L. Vasylechko, and R. Kalai Selvan, “Phase and Shape Dependent Electrochemical Properties of BiPO4 by PVP Assisted Hydrothermal Method for Pseudocapacitors,” RSC Advances 4 (2014): 65184-65194.

[24]

Z. Khan, S. Bhattu, S. Haram, and D. Khushalani, “SWCNT/BiVO4 Composites as Anode Materials for Supercapacitor Application,” RSC Advances 4 (2014): 17378-17381.

[25]

C. Yang, F. Lv, Y. Zhang, et al., “Confined Fe2VO4⊂Nitrogen-Doped Carbon Nanowires With Internal Void Space for High-Rate and Ultrastable Potassium-Ion Storage,” Advanced Energy Materials 9 (2019): 1902674.

[26]

J. B. Lee, J. Moon, O. B. Chae, et al., “Unusual Conversion-Type Lithiation in LiVO3 Electrode for Lithium-Ion Batteries,” Chemistry of Materials 28 (2016): 5314-5320.

[27]

S. Ni, J. Ma, J. Zhang, X. Yang, and L. Zhang, “Excellent Electrochemical Performance of NiV3O8/Natural Graphite Anodes via Novel In Situ Electrochemical Reconstruction,” Chemical Communications 51 (2015): 5880-5882.

[28]

F. K. Butt, M. Tahir, C. Cao, et al., “Synthesis of Novel ZnV2O4 Hierarchical Nanospheres and Their Applications as Electrochemical Supercapacitor and Hydrogen Storage Material,” ACS Applied Materials & Interfaces 6 (2014): 13635-13641.

[29]

M. S. Tamboli, S. S. Patil, D. K. Lee, et al., “Dynamic Role of Dopant and Graphene on BiVO4 Photoanode for Enhanced Photoelectrochemical Hydrogen Production,” Energy 298 (2024): 131329.

[30]

E. Park, J. Yoo, and K. Lee, “Enhanced Photoelectrochemical Hydrogen Productionvialinked BiVO4 Nanoparticles on Anodic WO3nanocoral Structures,” Sustainable Energy & Fuels 8 (2024): 1448-1456.

[31]

T. Kim, S. S. Patil, and K. Lee, “Nanospace-Confined Worm-Like BiVO4 in TiO2 Space Nanotubes (SPNTs) for Photoelectrochemical Hydrogen Production,” Electrochimica Acta 432 (2022): 141213.

[32]

E. Park, S. S. Patil, H. Lee, V. S. Kumbhar, and K. Lee, “Photoelectrochemical H2 Evolution on WO3/BiVO4 Enabled by Single-Crystalline TiO2 Overlayer Modulations,” Nanoscale 13 (2021): 16932-16941.

[33]

A. Brennhagen, C. Cavallo, D. S. Wragg, J. Sottmann, A. Y. Koposov, and H. Fjellvåg, “Understanding the (De)Sodiation Mechanisms in Na-Based Batteries Through Operando X-Ray Methods,” Batteries & Supercaps 4, no. 7 (2021): 1039.

[34]

A. Skurtveit, A. Brennhagen, H. Park, C. Cavallo, and A. Y. Koposov, “Benefits and Development Challenges for Conversion-Alloying Anode Materials in Na-Ion Batteries,” Frontiers in Energy Research 10 (2022): 897755.

[35]

N. R. Chodankar, H. D. Pham, A. K. Nanjundan, et al., “True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric Versus Hybrid Supercapacitors,” Small 16 (2020): 2002806.

[36]

R. Srinivasan, E. Elaiyappillai, S. Anandaraj, B. Duvaragan, and P. M. Johnson, “Study on the Electrochemical Behavior of BiVO4/PANI Composite as a High Performance Supercapacitor Material With Excellent Cyclic Stability,” Journal of Electroanalytical Chemistry 861 (2020): 113972.

[37]

Y. Arora, A. P. Shah, S. Battu, et al., “Nanostructured MoS2/BiVO4 Composites for Energy Storage Applications,” Scientific Reports 6 (2016): 36294.

[38]

C. Sengottaiyan, N. A. Kalam, R. Jayavel, et al., “BiVO4/RGO Hybrid Nanostructure for High Performance Electrochemical Supercapacitor,” Journal of Solid State Chemistry 269 (2019): 409-418.

[39]

R. Packiaraj, P. Devendran, S. A. Bahadur, and N. Nallamuthu, Journal of Materials Science: Materials in Electronics 29 (2018): 13265.

[40]

S. Balachandran, R. Karthikeyan, K. J. Jothi, et al., “Fabrication of Flower-Like Bismuth Vanadate Hierarchical Spheres for an Improved Supercapacitor Efficiency,” Materials Advances 3 (2022): 254-264.

[41]

T. Dhanasekaran, J. Yesuraj, V. Narayanan, and K. Kim, “Gradient Oxygen Vacancies in BiVO4 Olive-Seeds Nanostructure for Electrochemical Supercapacitor Applications,” Materials Chemistry and Physics 269 (2021): 124737.

[42]

S. S. Shah, M. A. Aziz, M. A. Marzooqi, A. Z. Khan, and Z. H. Yamani, “Enhanced Light-Responsive Supercapacitor Utilizing BiVO4 and Date Leaves-Derived Carbon: A Leap Towards Sustainable Energy Harvesting and Storage,” Journal of Power Sources 602 (2024): 234334.

[43]

O. M. Pardeshi, A. B. Gite, G. H. Jain, B. M. Palve, and A. V. Patil, “Sol Gel Auto-Combustion Synthesis of Bismuth Vanadate (BiVO4) Nanoparticles and Its Supercapacitor Applications,” Journal of Materials Science: Materials in Electronics 34 (2023): 1817.

[44]

L. K. Bommineedi, B. Pandit, and B. R. Sankapal, “Spongy Nano Surface Architecture of Chemically Grown BiVO4: High-Capacitance Retentive Electrochemical Supercapacitor,” International Journal of Hydrogen Energy 46 (2021): 25586-25595.

[45]

J. Shoba, S. Maruthamuthu, K. Sakthivel, and A. Khan, “High-Performance Battery Type Bismuth Vanadate Electrodes for Supercapacitors,” Ionics 30 (2024): 5713-5722.

[46]

S. S. Patil, D. P. Dubal, M. S. Tamboli, et al., “Ag:BiVO4 Dendritic Hybrid-Architecture for High Energy Density Symmetric Supercapacitors,” Journal of Materials Chemistry A 4 (2016): 7580-7584.

[47]

S. S. Patil, D. P. Dubal, V. G. Deonikar, et al., “Fern-Like rGO/BiVO4 Hybrid Nanostructures for High-Energy Symmetric Supercapacitor,” ACS Applied Materials & Interfaces 8 (2016): 31602-31610.

[48]

C. Murugan, K. Subramani, R. Subash, M. Sathish, and A. Pandikumar, “High-Performance High-Voltage Symmetric Supercapattery Based on a Graphitic Carbon Nitride/Bismuth Vanadate Nanocomposite,” Energy & Fuels 34 (2020): 16858-16869.

[49]

D. Khalafallah, X. Li, M. Zhi, and Z. Hong, “Nanostructuring Nickel-Zinc-Boron/Graphitic Carbon Nitride as the Positive Electrode and BiVO4-Immobilized Nitrogen-Doped Defective Carbon as the Negative Electrode for Asymmetric Capacitors,” ACS Applied Nano Materials 4 (2021): 14258-14273.

[50]

K. J. Jeeva, R. D. Kumar, I. Hasan, et al., “One-Pot Synthesis of Morinda Pubescens Fruit-Like Structure of Bi@BiVO4 by a Simple Hydrothermal Route: High Performance and Long-Term Stability for Supercapacitor Applications,” Journal of Energy Storage 75 (2024): 109597.

[51]

D. Fang, M. Cui, R. Bao, J. Yi, and Z. Luo, “In-Situ Coating Polypyrrole on Charged BiVO4 Nanowire Arrays to Improve Lithium-Ion Storage Properties,” Solid State Ionics 346 (2020): 115222.

[52]

L. Hu, X. Chen, and C. Feng, “Synthesis and Electrochemical Performances of BiVO4/CNTs Composite as Anode Material for Lithium-Ion Battery,” Ionics 28 (2022): 1483-1493.

[53]

R. Xie, Y. Li, H. Huang, et al., “Fabrication, Structure, Electrochemical Properties and Lithium-Ion Storage Performance of Nd:BiVO4 Nanocrystals,” Ceramics International 46 (2020): 3119-3123.

[54]

A. Ruud, J. Sottmann, P. Vajeeston, and H. Fjellvåg, “Operandoinvestigations of Lithiation and Delithiation Processes in a BiVO4 Anode Material,” Physical Chemistry Chemical Physics 20 (2018): 29798-29803.

[55]

Q. Wang, Z. Chen, S. Bai, X. Wang, and Y. Zhang, “Innovative Bvo@Cuo Design: A High-Performance Vanadium-Based Anode Material for Li-Ion Batteries,” Journal of Alloys and Compounds 958 (2023): 170485.

[56]

J. Wu, R. Zhang, Y. Wang, et al., “High-Capacity Cathode for Aqueous Zinc-ion Battery Based on MnOx-Modified Bismuth Vanadate,” Journal of Energy Storage 74 (2023): 109355.

[57]

D. P. Dubal, K. Jayaramulu, R. Zboril, R. A. Fischer, and P. Gomez-Romero, “Unveiling BiVO4 Nanorods as a Novel Anode Material for High Performance Lithium Ion Capacitors: Beyond Intercalation Strategies,” Journal of Materials Chemistry A 6 (2018): 6096-6106.

[58]

A. Manthiram, “A Reflection on Lithium-Ion Battery Cathode Chemistry,” Nature Communications 11 (2020): 1550.

[59]

H. J. Kim, T. Krishna, K. Zeb, et al., “A Comprehensive Review of Li-Ion Battery Materials and Their Recycling Techniques,” Electronics 9 (2020): 1161.

[60]

T. Kim, W. Song, D. Y. Son, L. K. Ono, and Y. Qi, “Lithium-ion Batteries: Outlook on Present, Future, and Hybridized Technologies,” Journal of Materials Chemistry A: Materials for Energy and Sustainability 2942 (2019): 7.

[61]

D. S. Pramila Devi, P. K. Bipinbal, T. Jabin, and S. K.N. Kutty, “Enhanced Electrical Conductivity of Polypyrrole/Polypyrrole Coated Short Nylon Fiber/Natural Rubber Composites Prepared by In Situ Polymerization in Latex,” Materials & Design 43 (2013): 337-347.

[62]

P. C. Wang, R. E. Lakis, and A. G. MacDiarmid, “Morphology-Correlated Electrical Conduction in Micro-Contact-Printed Polypyrrole Thin Films Grown by In Situ Deposition,” Thin Solid Films 516 (2008): 2341-2345.

[63]

Y. Tezuka, K. Aoki, and K. Shinozaki, “Kinetics of Oxidation of Polypyrrole-Coated Transparent Electrodes by In Situ Linear Sweep Voltammetry and Spectroscopy,” Synthetic Metals 30 (1989): 369-379.

[64]

S. Sahoo, G. Karthikeyan, G. C. Nayak, and C. K. Das, “Electrochemical Characterization of In Situ Polypyrrole Coated Graphene Nanocomposites,” Synthetic Metals 161 (2011): 1713-1719.

[65]

Y. Cao, D. Fang, R. Liu, et al., “Three-Dimensional Porous Iron Vanadate Nanowire Arrays as a High-Performance Lithium-Ion Battery,” ACS Applied Materials & Interfaces 7 (2015): 27685-27693.

[66]

C. Wang, H. Liu, M. Jiang, et al., “Ammonium Vanadate@Polypyrrole@Manganese Dioxide Nanowire Arrays With Enhanced Reversible Lithium Storage,” Applied Surface Science 416 (2017): 402-410.

[67]

Y. Cao, D. Chai, Z. Luo, et al., “Lithium Vanadate Nanowires@Reduced Graphene Oxide Nanocomposites on Titanium Foil With Super High Capacities for Lithium-Ion Batteries,” Journal of Colloid and Interface Science 498 (2017): 210-216.

[68]

M. Pasquali and G. Pistoia, “Primary 1.5 V Lithium Cells With BiVO4 Cathodes,” Journal of Power Sources 27 (1989): 29-34.

[69]

Y. Zhao, Y. Xie, X. Zhu, S. Yan, and S. Wang, “Surfactant-Free Synthesis of Hyperbranched Monoclinic Bismuth Vanadate and Its Applications in Photocatalysis, Gas Sensing, and Lithium-Ion Batteries,” Chemistry-A European Journal 14 (2008): 1601-1606.

[70]

H. Xia, F. Yan, M. O. Lai, L. Lu, and W. Song, “Electrochemical Properties OFBiFeO3 Thin Films Prepared by Pulsed Laser Deposition,” Functional Materials Letters 02 (2009): 163-167.

[71]

Y. Zheng, T. Zhou, X. Zhao, et al., “Atomic Interface Engineering and Electric-Field Effect in Ultrathin Bi2MoO6 Nanosheets for Superior Lithium Ion Storage,” Advanced Materials 29 (2017): 1700396.

[72]

D. P. Dubal, D. R. Patil, S. S. Patil, N. R. Munirathnam, and P. Gomez-Romero, “BiVO4 Fern Architectures: A Competitive Anode for Lithium-Ion Batteries,” Chemsuschem 10 (2017): 4163-4169.

[73]

H. Liu, X. Shi, L. Zhang, X. Shi, and J. Zhang, “Carbon-Coated BiVO4 Prepared by Molten Salt Method Combined With Ball Milling for High-Performance Lithium-Ion Battery Anode,” Ionics 28 (2022): 689-696.

[74]

K. C. Lee, J.-H. Huang, W. K. Pang, et al., “Construction of Hierarchical Flower-Like BiVO4/Bi2WO6 Microspheres With Enhanced Electrochemical Performance for Supercapacitors and Lithium ion Batteries,” Journal of Energy Storage 101 (2024): 113865.

[75]

M. S. Tamboli, H. S. Jadhav, D. R. Patil, et al., “Hierarchical Novel NiCo2O4/BiVO4 Hybrid Heterostructure as an Advanced Anode Material for Rechargeable Lithium Ion Battery,” International Journal of Energy Research 44 (2020): 12126-12135.

[76]

T. Jayalakshmi, Udayabhanu, and G. Nagaraju, “Noble Metals (Ag & Pt)-doped BiVO4 Nanoparticles as Cathode Materials for High-performance Lithium-ion Battery,” Journal of Materials Science: Materials in Electronics 34 (2023): 1042.

[77]

J. Sottmann, M. Herrmann, P. Vajeeston, et al., “Bismuth Vanadate and Molybdate: Stable Alloying Anodes for Sodium-Ion Batteries,” Chemistry of Materials 29 (2017): 2803-2810.

[78]

R. Muruganantham and W.-R. Liu, “A Venture Synthesis and Fabrication of BiVO4 as a Highly Stable Anode Material for Na-Ion Batteries,” ChemistrySelect 2 (2017): 8187-8195.

[79]

D.-R. Deng, H.-J. Xiong, Y.-L. Luo, et al., “Accelerating the Rate-Determining Steps of Sulfur Conversion Reaction for Lithium-Sulfur Batteries Working at an Ultrawide Temperature Range,” Advanced Materials 36 (2024): 2406135.

[80]

G. Chen, Q. Huang, T. Wu, and L. Lu, “Polyanion Sodium Vanadium Phosphate for Next Generation of Sodium-Ion Batteries—A Review,” Advanced Functional Materials 30 (2020): 2001289.

[81]

K. Kaliyappan, T. Or, Y. P. Deng, Y. Hu, Z. Bai, and Z. Chen, “Constructing Safe and Durable High-Voltage P2 Layered Cathodes for Sodium Ion Batteries Enabled by Molecular Layer Deposition of Alucone,” Advanced Functional Materials 30 (2020): 1910251.

[82]

L. Mu, S. Xu, Y. Li, et al., “Prototype Sodium-Ion Batteries Using an Air-Stable and Co/Ni-Free O3-Layered Metal Oxide Cathode,” Advanced Materials 27 (2015): 6928-6933.

[83]

A. Beda, J. M. Le Meins, P. L. Taberna, P. Simon, and C. Matei Ghimbeu, “Impact of Biomass Inorganic Impurities on Hard Carbon Properties and Performance in Na-Ion Batteries,” Sustainable Materials and Technologies 26 (2020): e00227.

[84]

W.-J. Li, C. Han, S.-L. Chou, et al., “Graphite-Nanoplate-Coated Bi2S3 Composite With High-Volume Energy Density and Excellent Cycle Life for Room-Temperature Sodium-Sulfide Batteries,” Chemistry - A European Journal 22 (2016): 590-597.

[85]

W. Sun, X. Rui, D. Zhang, et al., “Bismuth Sulfide: A High-Capacity Anode for Sodium-Ion Batteries,” Journal of Power Sources 309 (2016): 135-140.

[86]

C. Nithya, “Bi2O3@Reduced Graphene Oxide Nanocomposite: An Anode Material for Sodium-Ion Storage,” ChemPlusChem 80 (2015): 1000-1006.

[87]

J. Sottmann, M. Herrmann, P. Vajeeston, et al., “How Crystallite Size Controls the Reaction Path in Nonaqueous Metal Ion Batteries: The Example of Sodium Bismuth Alloying,” Chemistry of Materials 28 (2016): 2750-2756.

[88]

Q. Shen, J. Ma, M. Li, et al., “A Solid Redox Mediator Analog as a Highly Efficient Catalyst for Na-O2 Batteries,” Batteries 8 (2022): 227.

[89]

Y. Li and H. Dai, “Recent Advances in Zinc-Air Batteries,” Chemical Society Reviews 43 (2014): 5257-5275.

[90]

J. Fu, Z. P. Cano, M. G. Park, A. Yu, M. Fowler, and Z. Chen, “Electrically Rechargeable Zinc-Air Batteries: Progress, Challenges, and Perspectives,” Advanced Materials 29 (2017): 1604685.

[91]

P. Gu, M. Zheng, Q. Zhao, X. Xiao, H. Xue, and H. Pang, “Rechargeable Zinc-Air Batteries: A Promising Way to Green Energy,” Journal of Materials Chemistry A 5 (2017): 7651-7666.

[92]

D. He, Q. Wang, W. Zhang, X. Liu, and X. Cui, “BiVO4 Heterojunctions as Efficient Photoanodes for Photoelectrochemical Water Oxidation,” ChemPhotoChem 7 (2023): e202300080.

[93]

D. Chen, Z. Xie, Y. Tong, and Y. Huang, “Review on BiVO4-Based Photoanodes for Photoelectrochemical Water Oxidation: The Main Influencing Factors,” Energy & Fuels 36 (2022): 9932-9949.

[94]

T. S. Andrade, I. C. Sena, L. C. A. de Oliveira, P. Lianos, and M. C. Pereira, “Decreasing the Charging Voltage of a Zinc-Air Battery Using a Bifunctional W:BiVO4/V2O5 Photoelectrode and Sulfite as a Sacrificial Agent,” Materials Today Communications 28 (2021): 102546.

[95]

D. Wazir, S. Naskar, P. R. Sharmesh, P. Ghosal, and M. Deepa, “BiVO4/V2O5 Heterostructures for Durable and Highly Reversible Calcium- and Zinc-Ion Batteries,” Sustainable Energy & Fuels 9 (2025): 3954-3970.

RIGHTS & PERMISSIONS

2025 The Author(s). Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/