Impact of Conductive Agents in Sulfide Electrolyte Coating on Cathode Active Materials for Composite Electrodes in All-Solid-State Batteries

Dongyoung Kim , Jongjun Lee , Seungyeop Choi , Myunggeun Song , Hyobin Lee , Yong Min Lee

Battery Energy ›› 2025, Vol. 4 ›› Issue (6) : e70044

PDF
Battery Energy ›› 2025, Vol. 4 ›› Issue (6) : e70044 DOI: 10.1002/bte2.20250027
RESEARCH ARTICLE

Impact of Conductive Agents in Sulfide Electrolyte Coating on Cathode Active Materials for Composite Electrodes in All-Solid-State Batteries

Author information +
History +
PDF

Abstract

All-solid-state batteries (ASSBs) with sulfide-based solid electrolytes (SEs) are promising next-generation lithium-ion batteries owing to their high energy density and safety. The composite electrode is crucial in electrochemical performance, and SE coating on the cathode active material (CAM) is an effective strategy for improving the composite electrode structure. However, despite the importance of conducting agents (CAs) in composite electrodes, their impact on the SE coating process has not been thoroughly investigated. Here, the effect of CA incorporation during the SE coating process on the morphology of the coating layer, composite electrode structure, and resulting electrochemical performance of ASSBs were examined. When the SE coating excluded CA (SE@CAM), a dense SE layer was formed on the CAM surface. By contrast, incorporating carbon black (Super P) during SE coating (SE-SP@CAM) resulted in a Super P-rich SE coating layer, reducing the active surface area and electrical conductivity of electrode and resulting in poor electrochemical performance. Meanwhile, incorporating vapor-grown carbon fibers (VGCF, 1D CA) during the SE coating process (SE-VGCF@CAM) resulted in the formation of VGCF-embedded SE coating layer. This enlarged the active surface area and facilitated electron conduction, yielding an electrochemical performance higher than that of SE-SP@CAM and comparable to that of SE@CAM. This study revealed the impact of CA incorporation during the SE coating process on the morphology of the coating layer and composite electrode structure. Furthermore, it emphasizes the importance of the mixing protocol and CA selection in electrode fabrication, offering valuable insights into developing high-performance ASSBs.

Keywords

all-solid-state batteries / composite electrode / conductive agent / fabrication process / sulfide solid electrolytes

Cite this article

Download citation ▾
Dongyoung Kim, Jongjun Lee, Seungyeop Choi, Myunggeun Song, Hyobin Lee, Yong Min Lee. Impact of Conductive Agents in Sulfide Electrolyte Coating on Cathode Active Materials for Composite Electrodes in All-Solid-State Batteries. Battery Energy, 2025, 4(6): e70044 DOI:10.1002/bte2.20250027

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Janek and W. G. Zeier, “A Solid Future for Battery Development,” Nature Energy 1, no. 9 (2016): 16141, https://doi.org/10.1038/nenergy.2016.141.

[2]

A. Manthiram, X. Yu, and S. Wang, “Lithium Battery Chemistries Enabled by Solid-State Electrolytes,” Nature Reviews Materials 2, no. 4 (2017): 16103, https://doi.org/10.1038/natrevmats.2016.103.

[3]

Y. Xiao, Y. Wang, S.-H. Bo, J. C. Kim, L. J. Miara, and G. Ceder, “Understanding Interface Stability in Solid-State Batteries,” Nature Reviews Materials 5, no. 2 (2020): 105-126, https://doi.org/10.1038/s41578-019-0157-5.

[4]

Z. Zhang, Y. Shao, B. Lotsch, et al., “New Horizons for Inorganic Solid State Ion Conductors,” Energy & Environmental Science 11, no. 8 (2018): 1945-1976, https://doi.org/10.1039/C8EE01053F.

[5]

Q. Zhao, S. Stalin, C.-Z. Zhao, and L. A. Archer, “Designing Solid-State Electrolytes for Safe, Energy-Dense Batteries,” Nature Reviews Materials 5, no. 3 (2020): 229-252, https://doi.org/10.1038/s41578-019-0165-5.

[6]

A. Sakuda, A. Hayashi, and M. Tatsumisago, “Recent Progress on Interface Formation in All-Solid-State Batteries,” Current Opinion in Electrochemistry 6, no. 1 (2017): 108-114, https://doi.org/10.1016/j.coelec.2017.10.008.

[7]

Y.-G. Lee, S. Fujiki, C. Jung, et al., “High-Energy Long-Cycling All-Solid-State Lithium Metal Batteries Enabled by Silver-Carbon Composite Anodes,” Nature Energy 5, no. 4 (2020): 299-308, https://doi.org/10.1038/s41560-020-0575-z.

[8]

J. Lee, S. Byun, H. Lee, et al., “Digital-Twin-Driven Structural and Electrochemical Analysis of Li+ Single-Ion Conducting Polymer Electrolyte for All-Solid-State Batteries,” Battery Energy 2, no. 2 (2023): 20220061, https://doi.org/10.1002/bte2.20220061.

[9]

Z. Song, F. Chen, M. Martinez-Ibañez, et al., “A Reflection on Polymer Electrolytes for Solid-State Lithium Metal Batteries,” Nature Communications 14, no. 1 (2023): 4884, https://doi.org/10.1038/s41467-023-40609-y.

[10]

F. Han, A. S. Westover, J. Yue, et al., “High Electronic Conductivity as the Origin of Lithium Dendrite Formation Within Solid Electrolytes,” Nature Energy 4, no. 3 (2019): 187-196, https://doi.org/10.1038/s41560-018-0312-z.

[11]

X. Han, Y. Gong, K. Fu, et al., “Negating Interfacial Impedance in Garnet-Based Solid-State Li Metal Batteries,” Nature Materials 16, no. 5 (2017): 572-579, https://doi.org/10.1038/nmat4821.

[12]

M. Balaish, J. C. Gonzalez-Rosillo, K. J. Kim, Y. Zhu, Z. D. Hood, and J. L. M. Rupp, “Processing Thin but Robust Electrolytes for Solid-State Batteries,” Nature Energy 6, no. 3 (2021): 227-239, https://doi.org/10.1038/s41560-020-00759-5.

[13]

K. J. Kim, M. Balaish, M. Wadaguchi, L. Kong, and J. L. M. Rupp, “Solid-State Li-Metal Batteries: Challenges and Horizons of Oxide and Sulfide Solid Electrolytes and Their Interfaces,” Advanced Energy Materials 11, no. 1 (2021): 2002689, https://doi.org/10.1002/aenm.202002689.

[14]

Y. Kato, S. Hori, T. Saito, et al., “High-Power All-Solid-State Batteries Using Sulfide Superionic Conductors,” Nature Energy 1, no. 4 (2016): 16030, https://doi.org/10.1038/nenergy.2016.30.

[15]

N. Kamaya, K. Homma, Y. Yamakawa, et al., “A Lithium Superionic Conductor,” Nature Materials 10, no. 9 (2011): 682-686, https://doi.org/10.1038/nmat3066.

[16]

K. H. Park, Q. Bai, D. H. Kim, et al., “Design Strategies, Practical Considerations, and New Solution Processes of Sulfide Solid Electrolytes for All-Solid-State Batteries,” Advanced Energy Materials 8, no. 18 (2018): 1800035, https://doi.org/10.1002/aenm.201800035.

[17]

A. Sakuda, A. Hayashi, and M. Tatsumisago, “Sulfide Solid Electrolyte With Favorable Mechanical Property for All-Solid-State Lithium Battery,” Scientific Reports 3, no. 1 (2013): 2261, https://doi.org/10.1038/srep02261.

[18]

Y. Zhu, X. He, and Y. Mo, “Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights From Thermodynamic Analyses Based on First-Principles Calculations,” ACS Applied Materials & Interfaces 7, no. 42 (2015): 23685-23693, https://doi.org/10.1021/acsami.5b07517.

[19]

D. H. S. Tan, E. A. Wu, H. Nguyen, et al., “Elucidating Reversible Electrochemical Redox of Li6PS5Cl Solid Electrolyte,” ACS Energy Letters 4, no. 10 (2019): 2418-2427, https://doi.org/10.1021/acsenergylett.9b01693.

[20]

M. Calpa, N. C. Rosero-Navarro, A. Miura, R. Jalem, Y. Tateyama, and K. Tadanaga, “Chemical Stability of Li4PS4I Solid Electrolyte Against Hydrolysis,” Applied Materials Today 22 (2021): 100918, https://doi.org/10.1016/j.apmt.2020.100918.

[21]

P. Lu, D. Wu, L. Chen, H. Li, and F. Wu, “Air Stability of Solid-State Sulfide Batteries and Electrolytes,” Electrochemical Energy Reviews 5, no. 3 (2022): 3, https://doi.org/10.1007/s41918-022-00149-3.

[22]

O. Kwon, S. Y. Kim, J. Hwang, et al., “Design Principles for Moisture-Tolerant Sulfide-Based Solid Electrolytes and Associated Effect on the Electrochemical Performance of All-Solid-State Battery,” Journal of Electrochemical Science and Technology 15, no. 4 (2024): 437-458, https://doi.org/10.33961/jecst.2024.00535.

[23]

T. Shi, Q. Tu, Y. Tian, et al., “High Active Material Loading in All-Solid-State Battery Electrode via Particle Size Optimization,” Advanced Energy Materials 10, no. 1 (2020): 1902881, https://doi.org/10.1002/aenm.201902881.

[24]

J. Janek and W. G. Zeier, “Challenges In Speeding Up Solid-State Battery Development,” Nature Energy 8, no. 3 (2023): 230-240, https://doi.org/10.1038/s41560-023-01208-9.

[25]

D. Hlushkou, A. E. Reising, N. Kaiser, et al., “The Influence of Void Space on Ion Transport in a Composite Cathode for All-Solid-State Batteries,” Journal of Power Sources 396 (2018): 363-370, https://doi.org/10.1016/j.jpowsour.2018.06.041.

[26]

P. Minnmann, F. Strauss, A. Bielefeld, et al., “Designing Cathodes and Cathode Active Materials for Solid-State Batteries,” Advanced Energy Materials 12, no. 35 (2022): 2201425, https://doi.org/10.1002/aenm.202201425.

[27]

D. Lee, Y. Shim, Y. Kim, et al., “Shear Force Effect of the Dry Process on Cathode Contact Coverage in All-Solid-State Batteries,” Nature Communications 15, no. 1 (2024): 4763, https://doi.org/10.1038/s41467-024-49183-3.

[28]

J. Woo, Y. B. Song, H. Kwak, et al., “Liquid-Phase Synthesis of Highly Deformable and Air-Stable Sn-Substituted Li3PS4 for All-Solid-State Batteries Fabricated and Operated Under Low Pressures,” Advanced Energy Materials 13, no. 8 (2023): 2203292, https://doi.org/10.1002/aenm.202203292.

[29]

H. Nakamura, T. Kawaguchi, T. Masuyama, et al., “Dry Coating of Active Material Particles With Sulfide Solid Electrolytes for an All-Solid-State Lithium Battery,” Journal of Power Sources 448 (2020): 227579, https://doi.org/10.1016/j.jpowsour.2019.227579.

[30]

M. J. Kim, J.-S. Park, J. W. Lee, et al., “Half-Covered ‘Glitter-Cake’ Am@SE Composite: A Novel Electrode Design for High Energy Density All-Solid-State Batteries,” Nano-Micro Letters 17, no. 1 (2025): 119, https://doi.org/10.1007/s40820-024-01644-6.

[31]

J. Kim, M. J. Kim, J. Kim, et al., “High-Performance All-Solid-State Batteries Enabled by Intimate Interfacial Contact Between the Cathode and Sulfide-Based Solid Electrolytes,” Advanced Functional Materials 33, no. 12 (2023): 2211355, https://doi.org/10.1002/adfm.202211355.

[32]

Y. J. Nam, D. Y. Oh, S. H. Jung, and Y. S. Jung, “Toward Practical All-Solid-State Lithium-Ion Batteries With High Energy Density and Safety: Comparative Study for Electrodes Fabricated by Dry- and Slurry-Mixing Processes,” Journal of Power Sources 375 (2018): 93-101, https://doi.org/10.1016/j.jpowsour.2017.11.031.

[33]

E. Hayakawa, H. Nakamura, S. Ohsaki, and S. Watano, “Characterization of Solid-Electrolyte/Active-Material Composite Particles With Different Surface Morphologies for All-Solid-State Batteries,” Advanced Powder Technology 33, no. 3 (2022): 103470, https://doi.org/10.1016/j.apt.2022.103470.

[34]

E. Hayakawa, H. Nakamura, S. Ohsaki, and S. Watano, “Design of Active-Material/Solid-Electrolyte Composite Particles With Conductive Additives for All-Solid-State Lithium-Ion Batteries,” Journal of Power Sources 555 (2023): 232379, https://doi.org/10.1016/j.jpowsour.2022.232379.

[35]

T. Ates, M. Keller, J. Kulisch, T. Adermann, and S. Passerini, “Development of an All-Solid-State Lithium Battery by Slurry-Coating Procedures Using a Sulfidic Electrolyte,” Energy Storage Materials 17 (2019): 204-210, https://doi.org/10.1016/j.ensm.2018.11.011.

[36]

K. S. Saqib, T. J. Embleton, J. H. Choi, et al., “Understanding the Carbon Additive/Sulfide Solid Electrolyte Interface in Nickel-Rich Cathode Composites and Prioritizing the Corresponding Interplay Between the Electrical and Ionic Conductive Networks to Enhance All-Solid-State-Battery Rate Capability,” ACS Applied Materials & Interfaces 16, no. 36 (2024): 47551-47562, https://doi.org/10.1021/acsami.4c08670.

[37]

N. Lee, J. Lee, T. Lee, et al., “Rationally Designed Solution-Processible Conductive Carbon Additive Coating for Sulfide-Based All-Solid-State Batteries,” ACS Applied Materials & Interfaces 15, no. 29 (2023): 34931-34940, https://doi.org/10.1021/acsami.3c05713.

[38]

S. Hong, J. Kim, M. Kim, X. Meng, G. Lee, and D. Shin, “Effect of Hybrid Conductive Additives on All-Solid-State Lithium Batteries Using Li2S-P2S5 Glass-Ceramics,” Ceramics International 41, no. 3, Part B (2015): 5066-5071, https://doi.org/10.1016/j.ceramint.2014.12.076.

[39]

J. S. Kim, S. Jung, H. Kwak, et al., “Synergistic Halide-Sulfide Hybrid Solid Electrolytes for Ni-Rich Cathodes Design Guided by Digital Twin for All-Solid-State Li Batteries,” Energy Storage Materials 55 (2023): 193-204, https://doi.org/10.1016/j.ensm.2022.11.038.

[40]

M.-J. Kim, J.-W. Park, B. G. Kim, et al., “Facile Fabrication of Solution-Processed Solid-Electrolytes for High-Energy-Density All-Solid-State-Batteries by Enhanced Interfacial Contact,” Scientific Reports 10, no. 1 (2020): 11923, https://doi.org/10.1038/s41598-020-68885-4.

[41]

S. Noh, W. T. Nichols, M. Cho, and D. Shin, “Importance of Mixing Protocol for Enhanced Performance of Composite Cathodes in All-Solid-State Batteries Using Sulfide Solid Electrolyte,” Journal of Electroceramics 40, no. 4 (2018): 293-299, https://doi.org/10.1007/s10832-018-0129-y.

[42]

L. Fernandez-Diaz, J. Castillo, E. Sasieta-Barrutia, et al., “Mixing Methods for Solid State Electrodes: Techniques, Fundamentals, Recent Advances, and Perspectives,” Chemical Engineering Journal 464 (2023): 142469, https://doi.org/10.1016/j.cej.2023.142469.

[43]

E. Schlautmann, A. Weiß, O. Maus, et al., “Impact of the Solid Electrolyte Particle Size Distribution in Sulfide-Based Solid-State Battery Composites,” Advanced Energy Materials 13, no. 41 (2023): 2302309, https://doi.org/10.1002/aenm.202302309.

[44]

N. Kaiser, S. Spannenberger, M. Schmitt, M. Cronau, Y. Kato, and B. Roling, “Ion Transport Limitations in All-Solid-State Lithium Battery Electrodes Containing a Sulfide-Based Electrolyte,” Journal of Power Sources 396 (2018): 175-181, https://doi.org/10.1016/j.jpowsour.2018.05.095.

[45]

P. Minnmann, L. Quillman, S. Burkhardt, F. H. Richter, and J. Janek, “Editors' Choice—Quantifying the Impact of Charge Transport Bottlenecks in Composite Cathodes of All-Solid-State Batteries,” Journal of the Electrochemical Society 168, no. 4 (2021): 040537, https://doi.org/10.1149/1945-7111/abf8d7.

[46]

D. Shin, J. S. Nam, C. T. Linh Nguyen, et al., “Design of Densified Nickel-Rich Layered Composite Cathode via the Dry-Film Process for Sulfide-Based Solid-State Batteries,” Journal of Materials Chemistry A 10, no. 43 (2022): 23222-23231, https://doi.org/10.1039/D2TA05021H.

[47]

J. S. Nam, W. To A Ran, S. H. Lee, et al., “Densification and Charge Transport Characterization of Composite Cathodes With Single-Crystalline LiNi0.8Co0.15Al0.05O2 for Solid-State Batteries,” Energy Storage Materials 46 (2022): 155-164, https://doi.org/10.1016/j.ensm.2022.01.015.

[48]

Z. Siroma, T. Sato, T. Takeuchi, R. Nagai, A. Ota, and T. Ioroi, “AC Impedance Analysis of Ionic and Electronic Conductivities in Electrode Mixture Layers for an All-Solid-State Lithium-Ion Battery,” Journal of Power Sources 316 (2016): 215-223, https://doi.org/10.1016/j.jpowsour.2016.03.059.

[49]

K. M. Shaju, G. V. Subba Rao, and B. V. R. Chowdari, “Electrochemical Kinetic Studies of Li-Ion in O2-Structured Li2/3(Ni1/3Mn2/3)O2 and Li(2/3)+x (Ni1/3Mn2/3)O2 by EIS and GITT,” Journal of the Electrochemical Society 150, no. 1 (2003): A1, https://doi.org/10.1149/1.1521754.

[50]

X. H. Rui, N. Yesibolati, S. R. Li, C. C. Yuan, and C. H. Chen, “Determination of the Chemical Diffusion Coefficient of Li+ in Intercalation-Type Li3V2(PO4)3 Anode Material,” Solid State Ionics 187, no. 1 (2011): 58-63, https://doi.org/10.1016/j.ssi.2011.02.013.

[51]

S.-B. Hong, Y.-J. Lee, U.-H. Kim, et al., “All-Solid-State Lithium Batteries: Li+-Conducting Ionomer Binder for Dry-Processed Composite Cathodes,” ACS Energy Letters 7, no. 3 (2022): 1092-1100, https://doi.org/10.1021/acsenergylett.1c02756.

[52]

X. Yang and A. L. Rogach, “Electrochemical Techniques in Battery Research: A Tutorial for Nonelectrochemists,” Advanced Energy Materials 9, no. 25 (2019): 1900747, https://doi.org/10.1002/aenm.201900747.

RIGHTS & PERMISSIONS

2025 The Author(s). Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/