Porous Polymer Electrolytes Based on Poly(Methyl Methacrylate) for Sodium Ion Battery

Younes Ghayebzadeh , Seyedeh-Arefeh Safavi-Mirmahalleh , Ali Zardehi-Tabriz , Hossein Roghani-Mamaqani , Mehdi Salami-Kalajahi

Battery Energy ›› 2025, Vol. 4 ›› Issue (6) : e70035

PDF
Battery Energy ›› 2025, Vol. 4 ›› Issue (6) : e70035 DOI: 10.1002/bte2.20250023
RESEARCH ARTICLE

Porous Polymer Electrolytes Based on Poly(Methyl Methacrylate) for Sodium Ion Battery

Author information +
History +
PDF

Abstract

Sodium batteries are a suitable alternative to lithium batteries due to the limited availability of lithium metal resources. Research on polymer electrolytes based on poly(methyl methacrylate) (PMMA) in sodium batteries has been limited. However, studies on PMMA-based polymer electrolytes in sodium batteries have shown that the use of fillers is an effective method for improving the ionic conductivity of PMMA. Another approach that can significantly enhance the conductivity of this type of electrolyte is the introduction of porosity into the electrolyte. In the present study, the electrochemical properties of a porous polymer electrolyte based on PMMA are investigated. The cross-linked PMMA-based gel polymer electrolytes (GPEs) are prepared via a photopolymerization technique, and the porosity of the prepared electrolyte is achieved through an etching method using a solvent. The results showed that the introduction of porosity enhances the ionic conductivity of GPEs in sodium-ion batteries. The optimized GPE exhibited an ionic conductivity of 1.56 mS cm⁻¹ at room temperature, excellent electrochemical stability (upper 4.5 V), and a specific capacity of 138.9 mAh g−1. These findings highlight the potential of porous PMMA-based GPEs for the development of high-performance sodium ion batteries, offering a viable pathway toward next-generation energy storage technologies.

Keywords

gel polymer electrolyte / poly(methyl methacrylate) / porous polymer electrolyte / sodium ion batteries

Cite this article

Download citation ▾
Younes Ghayebzadeh, Seyedeh-Arefeh Safavi-Mirmahalleh, Ali Zardehi-Tabriz, Hossein Roghani-Mamaqani, Mehdi Salami-Kalajahi. Porous Polymer Electrolytes Based on Poly(Methyl Methacrylate) for Sodium Ion Battery. Battery Energy, 2025, 4(6): e70035 DOI:10.1002/bte2.20250023

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. A. Ibrahim, M. K. Ayomoh, R. C. Bansal, M. N. Gitau, V. S. S. Yadavalli, and R. Naidoo, “Sustainability of Power Generation for Developing Economies: A Systematic Review of Power Sources Mix,” Energy Strategy Reviews 47 (2023): 101085, https://doi.org/10.1016/j.esr.2023.101085.

[2]

M. Golshan and M. Salami-Kalajahi, “Unraveling Chromism-Induced Marvels in Energy Storage Systems,” Progress in Materials Science 148 (2025): 101374, https://doi.org/10.1016/j.pmatsci.2024.101374.

[3]

H. Pan, Y. S. Hu, and L. Chen, “Room-Temperature Stationary Sodium-Ion Batteries for Large-Scale Electric Energy Storage,” Energy & Environmental Science 6 (2013): 2338-2360, https://doi.org/10.1039/C3EE40847G.

[4]

G. Zhao, X. Wang, and M. Negnevitsky, “Connecting Battery Technologies for Electric Vehicles From Battery Materials to Management,” iScience 25 (2022): 103744, https://doi.org/10.1016/j.isci.2022.103744.

[5]

A. E. Gerdroodbar, H. Alihemmati, S. A. Safavi-Mirmahaleh, et al., “A Review on Ion Transport Pathways and Coordination Chemistry Between Ions and Electrolytes in Energy Storage Devices,” Journal of Energy Storage 74 (2023): 109311, https://doi.org/10.1016/j.est.2023.109311.

[6]

Y. Fang, L. Xiao, Z. Chen, X. Ai, Y. Cao, and H. Yang, “Recent Advances in Sodium-Ion Battery Materials,” Electrochemical Energy Reviews 1 (2018): 294-323, https://doi.org/10.1007/s41918-018-0008-x.

[7]

N. Yabuuchi, K. Kubota, M. Dahbi, and S. Komaba, “Research Development on Sodium-Ion Batteries,” Chemical Reviews 114 (2014): 11636-11682, https://doi.org/10.1021/cr500192f.

[8]

A. R. Nurohmah, S. S. Nisa, K. N. R. Stulasti, et al., “Sodium-Ion Battery From Sea Salt: A Review,” Materials for Renewable and Sustainable Energy 11 (2022): 71-89, https://doi.org/10.1007/s40243-022-00208-1.

[9]

C. Bao, F. Jiang, and Y. Tian, “Research on Sodium-Ion Batteries in New Energy Storage,” Journal of Physics: Conference Series 2310 (2022): 012037, https://doi.org/10.1088/1742-6596/2310/1/012037.

[10]

A. Enayati-Gerdroodbar, S. N. Eliseeva, and M. Salami-Kalajahi, “A Review on the Effect of Nanoparticles/Matrix Interactions on the Battery Performance of Composite Polymer Electrolytes,” Journal of Energy Storage 68 (2023): 107836, https://doi.org/10.1016/j.est.2023.107836.

[11]

M. S. Ahmed, M. Islam, B. Raut, S. Yun, H. Y. Kim, and K. W. Nam, “A Comprehensive Review of Functional Gel Polymer Electrolytes and Applications in Lithium-Ion Battery,” Gels 10 (2024): 563, https://doi.org/10.3390/gels10090563.

[12]

X. Su, X. P. Xu, Z. Q. Ji, J. Wu, F. Ma, and L. Z. Fan, “Polyethylene Oxide-Based Composite Solid Electrolytes for Lithium Batteries: Current Progress, Low-Temperature and High-Voltage Limitations, and Prospects,” Electrochemical Energy Reviews 7 (2024): 2, https://doi.org/10.1007/s41918-023-00204-7.

[13]

J. C. Wang, W. J. Zhou, N. Zhang, P. F. Wang, and T. F. Yi, “Review on Poly (Ethylene Oxide)-Based Solid Electrolytes: Key Issues, Potential Solutions, and Outlook,” Energy & Fuels 38 (2024): 18395-18412, https://doi.org/10.1021/acs.energyfuels.4c03846.

[14]

S. Zhou, S. Zhong, Y. Dong, et al., “Composition and Structure Design of Poly (Vinylidene Fluoride)-Based Solid Polymer Electrolytes for Lithium Batteries,” Advanced Functional Materials 33 (2023): 2214432, https://doi.org/10.1002/adfm.202214432.

[15]

Y. Liu, H. Xu, Z. Chen, et al., “PVDF-Based Composite Solid Polymer Electrolyte Incorporated With Cubic-ZrO2-x for Long-Cycle Lithium Metal Batteries,” Journal of Alloys and Compounds 1022 (2025): 179925, https://doi.org/10.1016/j.jallcom.2025.179925.

[16]

H. Liu, Y. Liao, C. Leung, et al., “Ring-Opening Polymerization Reconfigures Polyacrylonitrile Network for Ultra Stable Solid-State Lithium Metal Batteries,” Advanced Energy Materials 15 (2025): 2402795, https://doi.org/10.1002/aenm.202402795.

[17]

R. Whba, M. S. Su'ait, F. Whba, and A. Ahmad, “Research Progress on Polyacrylonitrile-Based Polymer Electrolytes for Electrochemical Devices: Insight Into Electrochemical Performance,” Journal of Power Sources 606 (2024): 234539, https://doi.org/10.1016/j.jpowsour.2024.234539.

[18]

J. Chen, C. Luo, Y. Niu, and G. Li, “A Star Polymer POSS-PMMA Based Gel Electrolyte With Balanced Electrochemical and Mechanical Properties for Lithium Metal Battery,” Polymer 315 (2024): 127822, https://doi.org/10.1016/j.polymer.2024.127822.

[19]

W. Yao, Z. Zheng, X. Zhang, et al., “High Performance Gel Polymer Electrolyte Based on P (MMA-Co-Sty) and PVDF Blend for Fast-Charging Lithium Metal Batteries With Extended Cycle Life,” Journal of Power Sources 614 (2024): 234999, https://doi.org/10.1016/j.jpowsour.2024.234999.

[20]

S. Janakiraman, O. Padmaraj, Sudipto Ghosh, and A. Venimadhav, “A Porous Poly (Vinylidene Fluoride-Co-Hexafluoropropylene) Based Separator-Cum-Gel Polymer Electrolyte for Sodium-Ion Battery,” Journal of Electroanalytical Chemistry 826 (2018): 142-149, https://doi.org/10.1016/j.jelechem.2018.08.032.

[21]

K. Vignarooban, P. Badami, M. A. K. L. Dissanayake, P. Ravirajan, and A. M. Kannan, “Poly-Acrylonitrile-Based Gel-Polymer Electrolytes for Sodium-Ion Batteries,” Ionics 23 (2017): 2817-2822, https://doi.org/10.1007/s11581-017-2002-4.

[22]

S. Qin, M. Wu, H. Zhao, et al., “An In-Situ Cross-Linked Network PMMA-Based Gel Polymer Electrolyte With Excellent Lithium Storage Performance,” Journal of Materials Science & Technology 199 (2024): 197-205, https://doi.org/10.1016/j.jmst.2024.01.084.

[23]

D. Kumar and S. A. Hashmi, “Ion Transport and Ion-Filler-Polymer Interaction in Poly(Methyl Methacrylate)-Based, Sodium Ion Conducting, Gel Polymer Electrolytes Dispersed With Silica Nanoparticles,” Journal of Power Sources 195 (2010): 5101-5108, https://doi.org/10.1016/j.jpowsour.2010.02.026.

[24]

H. Gao, W. Zhou, K. Park, and J. B. Goodenough, “A Sodium-Ion Battery With a Low-Cost Cross-Linked Gel-Polymer Electrolyte,” Advanced Energy Materials 6 (2016): 1600467, https://doi.org/10.1002/aenm.201600467.

[25]

S. Kasetaite, S. De la Flor, A. Serra, and J. Ostrauskaite, “Effect of Selected Thiols on Cross-Linking of Acrylated Epoxidized Soybean Oil and Properties of Resulting Polymers,” Polymers 10 (2018): 439, https://doi.org/10.3390/polym10040439.

[26]

J. Zheng, W. Li, X. Liu, J. Zhang, X. Feng, and W. Chen, “Progress in Gel Polymer Electrolytes for Sodium-Ion Batteries,” Energy & Environmental Materials 6 (2023): e12422, https://doi.org/10.1002/aenm.201600467.

[27]

X. Li, Z. Zheng, W. Guo, G. Fu, and Y. Zhu, “Flexible and Compact PVDF/PMMA-Based Gel Polymer Electrolytes for High-Performance Sodium Metal Batteries,” Macromolecular Rapid Communications 46 (2025): 2400689, https://doi.org/10.1002/marc.202400689.

[28]

Y. Zhao, H. Liu, X. Meng, A. Liu, Y. Chen, and T. Ma, “A Cross-Linked Tin Oxide/Polymer Composite Gel Electrolyte With Adjustable Porosity for Enhanced Sodium Ion Batteries,” Chemical Engineering Journal 431 (2022): 133922, https://doi.org/10.1016/j.cej.2021.133922.

[29]

J. I. Kim, K. Y. Chung, and J. H. Park, “Design of a Porous Gel Polymer Electrolyte for Sodium Ion Batteries,” Journal of Membrane Science 566 (2018): 122-128, https://doi.org/10.1016/j.memsci.2018.08.066.

[30]

K. Guo, W. Cheng, H. Chen, et al., “Facile and Rapid Synthesis of Porous Hydrated V2O5 Nanoflakes for High-Performance Zinc Ion Battery Applications,” Nanomaterials 12 (2022): 2400, https://doi.org/10.3390/nano12142400.

[31]

A. Lobna Arfaoui, F. Janene, S. Kouass, S. Mignard, F. Touati, and H. Dhaouadi, “CuO Nanosheets: Synthesis, Characterization, and Catalytic Performance,” Russian Journal of Inorganic Chemistry 64 (2019): 1687-1696, https://doi.org/10.1134/S0036023619130060.

[32]

F. Mohammadzadeh, M. Golshan, V. Haddadi-Asl, and M. Salami-Kalajahi, “Adsorption Kinetics of Methylene Blue From Wastewater Using pH-Sensitive Starch-Based Hydrogels,” Scientific Reports 13 (2023): 11900, https://doi.org/10.1038/s41598-023-39241-z.

[33]

S. Sain, D. Ray, A. Mukhopadhyay, et al., “Synthesis and Characterization of PMMA-Cellulose Nanocomposites by In Situ Polymerization Technique,” Journal of Applied Polymer Science 126 (2012): E127-E134, https://doi.org/10.1002/app.36723.

[34]

S. B. Aziz, O. G. Abdullah, M. A. Brza, A. K. Azawy, and D. A. Tahir, “Effect of Carbon Nano-Dots (CNDs) on Structural and Optical Properties of PMMA Polymer Composite,” Results in Physics 15 (2019): 102776, https://doi.org/10.1016/j.rinp.2019.102776.

[35]

N. S. Alkayal and M. A. Al Ghamdi, “Cross-Linked Poly(Methyl Methacrylate) Nanocomposites: Synthesis, Characterization, and Antibacterial Effects,” Polymers 17 (2025): 269, https://doi.org/10.3390/polym17030269.

[36]

C. Hu, T. Ahmad, M. S. Haider, et al., “A Thermogelling Organic-Inorganic Hybrid Hydrogel With Excellent Printability, Shape Fidelity and Cytocompatibility for 3D Bioprinting,” Biofabrication 14 (2022): 025005, https://doi.org/10.1088/1758-5090/ac40ee.

[37]

A. Zardehi-Tabriz, H. Anavi, Y. Ghayebzadeh, H. Roghani-Mamaqani, and M. Salami-Kalajahi, “Porous Poly(Poly[Ethylene Glycol] Methyl Ether Methacrylate) Gel Polymer Electrolyte With Superior Electrochemical Properties in a High-Performance Potassium-Ion Battery,” Battery Energy (2025): 20240096, https://doi.org/10.1002/bte2.20240096.

[38]

A. C. Lazanas and M. I. Prodromidis, “Electrochemical Impedance Spectroscopy—A Tutorial,” ACS Measurement Science Au 3 (2023): 162-193, https://doi.org/10.1021/acsmeasuresciau.2c00070.

[39]

S. A. Safavi-Mirmahalleh and M. Salami-Kalajahi, “Application of Cellulose-Polyaniline Blends as Electrolytes of Lithium-Ion Battery,” Advanced Energy and Sustainability Research (2025): 2500021, https://doi.org/10.1002/aesr.202500021.

[40]

D. Zhang, X. Meng, W. Hou, et al., “Solid Polymer Electrolytes: Ion Conduction Mechanisms and Enhancement Strategies,” Nano Research Energy 2 (2023): e9120050, https://doi.org/10.26599/NRE.2023.9120050.

[41]

C. F. J. Francis, I. L. Kyratzis, and A. S. Best, “Lithium-Ion Battery Separators for Ionic-Liquid Electrolytes: A Review,” Advanced Materials 32 (2020): 1-22, https://doi.org/10.1002/adma.201904205.

[42]

K. Hankins, M. H. Putra, J. Wagner-Henke, A. Groß, and U. Krewer, “Insights on SEI Growth and Properties in Na-Ion Batteries Via Physically Driven Kinetic Monte Carlo Model,” Advanced Energy Materials (2024): 2401153, https://doi.org/10.1002/aenm.202401153.

[43]

Y. Xue and D. J. Quesnel, “Synthesis and Electrochemical Study of Sodium Ion Transport Polymer Gel Electrolytes.” RSC Advances (2016). 6, 7504-7510, https://doi.org/10.1039/C5RA23864A.

[44]

X. Wang, Z. Liu, Y. Tang, J. Chen, Z. Mao, and D. Wang, “PVDF-HFP/PMMA/TPU-Based Gel Polymer Electrolytes Composed of Conductive Na3Zr2Si2PO12 Filler for Application in Sodium Ions Batteries,” Solid State Ionics 359 (2021): 115532, https://doi.org/10.1016/j.ssi.2020.115532.

[45]

M. Patel, K. Mishra, N. A. Chaudhary, V. Madhani, J. J. Chaudhari, and D. Kumar, “A Sodium Ion Conducting Gel Polymer Electrolyte With Counterbalance Between 1-Ethyl-3-Methylimidazolium Tetrafluoroborate and Tetra Ethylene Glycol Dimethyl Ether for Electrochemical Applications.” RSC Advances (2024). 14, 14358-14373, https://doi.org/10.1039/D4RA01615G.

RIGHTS & PERMISSIONS

2025 The Author(s). Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

82

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/