Machine Learning Analysis of Hydrothermally Synthesized LiFePO4 for Lithium-Ion Battery

Nita U. Kalugade , Digambar S. Sawant , Heena S. Mulla , Sandesh V. Gaikwad , Charudatta S. Pawar , Deepak P. Dubal , Gaurav M. Lohar

Battery Energy ›› 2025, Vol. 4 ›› Issue (6) : e70045

PDF
Battery Energy ›› 2025, Vol. 4 ›› Issue (6) : e70045 DOI: 10.1002/bte2.20250021
REVIEW

Machine Learning Analysis of Hydrothermally Synthesized LiFePO4 for Lithium-Ion Battery

Author information +
History +
PDF

Abstract

Rechargeable lithium-ion batteries (LIBs) have quickly become one of the most popular energy storage sources for electronic devices. The LIB cathode significantly affects the battery's energy density, safety, lifespan, and cost, and LIBs exhibit better chemical and thermal stability. Among various cathode materials, lithium iron phosphate (LiFePO4) has gained significant attention due to its excellent safety, low toxicity, cost-effectiveness, and structural stability, making it a preferred choice for commercial and high-performance battery applications. However, the electrochemical performance of LiFePO4 is strongly influenced by its morphology and nanostructure. This review provides a comprehensive analysis of hydrothermally synthesized LiFePO4 nanomaterials, focusing on their structural, morphological, and electrochemical properties. A detailed discussion of 1D, 2D, and 3D LiFePO4 nanostructures is presented, highlighting their impact on Li-ion transport, conductivity, and overall battery performance. Furthermore, the electronic structure of LiFePO4 is examined for its charge storage mechanisms. A novel aspect of this review is the application of machine learning techniques to analyze specific capacity variations under different hydrothermal synthesis conditions and electrochemical parameters, offering insights into performance optimization. Finally, the global challenges, prospects, and research opportunities for LiFePO4-based LIBs are discussed, providing a roadmap for further advancements in this field.

Keywords

hydrothermal synthesis / LiFePO4 / lithium-ion battery / machine learning / nanomaterials

Cite this article

Download citation ▾
Nita U. Kalugade, Digambar S. Sawant, Heena S. Mulla, Sandesh V. Gaikwad, Charudatta S. Pawar, Deepak P. Dubal, Gaurav M. Lohar. Machine Learning Analysis of Hydrothermally Synthesized LiFePO4 for Lithium-Ion Battery. Battery Energy, 2025, 4(6): e70045 DOI:10.1002/bte2.20250021

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

B. Zhang, Y. Xu, J. Wang, X. Ma, and W. Hou, “Suppressing Fe-Li, Ni-Li Antisite Defects in LiFePO4 and LiNi1/3Co1/3Mn1/3O2 by Optimized Synthesis Methods,” ACS Applied Energy Materials 3 (2020): 5893-5901, https://doi.org/10.1021/acsaem.0c00795.

[2]

M. K. Devaraju and I. Honma, “Hydrothermal and Solvothermal Process Towards Development of LiMPO 4 (M = Fe, Mn) Nanomaterials for Lithium-Ion Batteries,” Advanced Energy Materials 2 (2012): 284-297, https://doi.org/10.1002/aenm.201100642.

[3]

C. D. Chavare, D. S. Sawant, H. R. Kulkarni, and G. M. Lohar, Graphene-Based Supercapacitors (Springer, 2024), 237-259, https://doi.org/10.1007/978-981-99-9931-6_12.

[4]

O. C. Pore, A. V. Fulari, V. G. Parale, et al., “Facile Hydrothermal Synthesis of NiO/rGO Nanocomposite Electrodes for Supercapacitor and Nonenzymatic Glucose Biosensing Application,” Journal of Porous Materials 29 (2022): 1991-2001, https://doi.org/10.1007/s10934-022-01313-2.

[5]

M. S. Whittingham, “Lithium Batteries and Cathode Materials,” Chemical Reviews 104 (2004): 4271-4302, https://doi.org/10.1021/cr020731c.

[6]

M. S. Whittingham, “Materials Challenges Facing Electrical Energy Storage Introduction to Energy Storage,” MRS Bulletin 33 (2008): 82.

[7]

D. B. Mane, O. C. Pore, D. S. Sawant, et al., “Supercapacitor Performance of Vanadium-Doped Nickel Hydroxide Microflowers Synthesized Using the Chemical Route,” Applied Physics A 129 (2023): 158, https://doi.org/10.1007/s00339-023-06449-9.

[8]

T. Chen, Y. Jin, H. Lv, et al., “Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems,” Transactions of Tianjin University 26 (2020): 208-217, https://doi.org/10.1007/s12209-020-00236-w.

[9]

O. C. Pore, A. V. Fulari, S. H. Mujawar, R. V. Shejwal, V. J. Fulari, and G. M. Lohar, “High Stability Mn2O3/MnCO3 Microcubes Synthesized by Hydrothermal Method for Supercapacitor Application,” Materials Science in Semiconductor Processing 143 (2022): 106550, https://doi.org/10.1016/J.MSSP.2022.106550.

[10]

D. S. Sawant, O. C. Pore, S. B. Kulkarni, and G. M. Lohar, “3D-Printed Carbon-Based Nanomaterials for Supercapacitors,” in 3D Printing, 1st ed. (CRC Press, Inc, 2023): 213-230.

[11]

O. C. Pore, A. V. Fulari, R. K. Kamble, et al., “Hydrothermally Synthesized Co3O4 Microflakes for Supercapacitor and Non-Enzymatic Glucose Sensor,” Journal of Materials Science: Materials in Electronics 32 (2021): 20742-20754, https://doi.org/10.1007/s10854-021-06586-y.

[12]

Q. Wei, F. Xiong, S. Tan, et al., “Porous One-Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage,” Advanced Materials 29 (2017): 1602300, https://doi.org/10.1002/adma.201602300.

[13]

O. C. Pore, A. V. Fulari, V. J. Fulari, and G. M. Lohar, “Hydrothermally Synthesized Nickel Cobalt Oxide for Bifunctional Electrochemical Supercapacitor and Nonenzymatic Glucose Biosensor,” Applied Physics A 129 (2023): 33, https://doi.org/10.1007/s00339-022-06312-3.

[14]

O. C. Pore, A. V. Fulari, R. V. Shejwal, V. J. Fulari, and G. M. Lohar, “Review on Recent Progress in Hydrothermally Synthesized MCo2O4/rGO Composite for Energy Storage Devices,” Chemical Engineering Journal 426 (2021): 131544, https://doi.org/10.1016/j.cej.2021.131544.

[15]

E. P. Prakhar J., Lithium-iron Phosphate Batteries Market Outlook - 2030, (2021).

[16]

Federal Consortium for Advanced Batteries, National Blueprint for Lithium Batteries Executive Summary, 2021.

[17]

Supercharged: Challenges and Opportunities in Global Battery Storage Markets Brochure, 2018.

[18]

Y. Liu, G. Y. Luo, Y. J. Gu, F. Z. Wu, Y. Mai, and X. Y. Dai, “Study on the Preparation of Lifepo4 by Hydrothermal Method,” in IOP Conference Series on Material Science and Engineering (Institute of Physics Publishing, 2020), https://doi.org/10.1088/1757-899X/761/1/012004.

[19]

C. A. J. Fisher, V. M. Hart Prieto, and M. S. Islam, “Lithium Battery Materials LiMPO4 (M = Mn, Fe, Co, and Ni): Insights Into Defect Association, Transport Mechanisms, and Doping Behavior,” Chemistry of Materials 20 (2008): 5907-5915, https://doi.org/10.1021/cm801262x.

[20]

C. Nithya and S. Gopukumar, “Nanostructured Transition Metal Chalcogenides For Rechargeable Batteries,” in Nanobatteries and Nanogenerators: Materials, Technologies and Applications: A Volume in Micro and Nano Technologies (Elsevier, 2020), 383-431, https://doi.org/10.1016/B978-0-12-821548-7.00015-4.

[21]

Y. Lin, F. Li, K. Zhao, et al., “Earth-Abundant Spinel LiMn2O4 Cathode for Lithium-Ion Batteries: Challenges, Strategies, and Perspectives,” Small Methods 9 (2025): 2402233, https://doi.org/10.1002/smtd.202402233.

[22]

T. V. S. L. Satyavani, A. Srinivas Kumar, and P. S. V. Subba Rao, “Methods of Synthesis and Performance Improvement of Lithium Iron Phosphate for High Rate Li-Ion Batteries: A Review,” Engineering Science and Technology, an International Journal 19 (2016): 178-188, https://doi.org/10.1016/j.jestch.2015.06.002.

[23]

L. Liu, R. Yang, C. Liao, et al., “Synthesis and Characterization of LiFePO4/C Using Low Iron Ion Solution by Goethite Method,” Journal of Solid State Electrochemistry 28 (2024): 2175-2187, https://doi.org/10.1007/s10008-023-05754-w.

[24]

D. Meng, H. Duan, S. Wu, P. Zhu, and S. Yuan, “Cost-Effective Hydrothermal Synthesis of High-Performance Lithium Iron Phosphate via Lithium Sources Recycling,” Journal of Environmental Chemical Engineering 12 (2024): 114868, https://doi.org/10.1016/j.jece.2024.114868.

[25]

G. Liu, Z. Liu, J. Gu, et al., “Facile and Sustainable Recovery of Spent LiFePO4 Battery Cathode Materials in a Ca(ClO)2 System,” Green Chemistry 26 (2024): 3317-3328, https://doi.org/10.1039/D3GC04418A.

[26]

M. Alyoubi, I. Ali, and A. M. Abdelkader, “Machine Learning-Driven Optimization of Spent Lithium Iron Phosphate Regeneration,” ACS Sustainable Chemistry & Engineering 13 (2025): 3349-3361, https://doi.org/10.1021/acssuschemeng.4c10415.

[27]

H. Wang, X. Qiu, Z. Feng, X. Li, and T. Wei, “An Environmentally Friendly and Facile Approach to Recycle Spent LiFePO4 for Resynthesizing LiFePO4/C Materials,” Journal of Material Cycles and Waste Management 27 (2025): 2618-2627, https://doi.org/10.1007/s10163-025-02262-z.

[28]

P. Pathmanaban, P. Arulraj, M. Raju, and C. Hariharan, “Optimizing Electric Bike Battery Management: Machine Learning Predictions of LiFePO4 Temperature Under Varied Conditions,” Journal of Energy Storage 99 (2024): 113217, https://doi.org/10.1016/j.est.2024.113217.

[29]

M.-F. Ng, Y. Sun, and Z. W. Seh, “Machine Learning-Inspired Battery Material Innovation,” Energy Advances 2 (2023): 449-464, https://doi.org/10.1039/D3YA00040K.

[30]

J. Zou, Y. Gao, M. H. Frieges, M. F. Börner, A. Kampker, and W. Li, “Machine Learning for Battery Quality Classification and Lifetime Prediction Using Formation Data,” Energy and AI 18 (2024): 100451, https://doi.org/10.1016/j.egyai.2024.100451.

[31]

V. Palomares, A. Goñi, I. Gil de Muro, et al., “Influence of Carbon Content on LiFeP4/C Samples Synthesized by Freeze-Drying Process,” Journal of the Electrochemical Society 156 (2009): A817, https://doi.org/10.1149/1.3205480.

[32]

M. Higuchi, K. Katayama, Y. Azuma, M. Yukawa, and M. Suhara, “Synthesis of LiFePO4 Cathode Material by Microwave Processing,” Journal of Power Sources 119 (2003): 258-261, https://doi.org/10.1016/S0378-7753(03)00243-X.

[33]

J. Lim, V. Mathew, K. Kim, J. Moon, and J. Kim, “One-Pot Synthesis of Multi-Morphous LiFePO4 Nanoparticles in Polyol Medium,” Journal of the Electrochemical Society 158 (2011): A736, https://doi.org/10.1149/1.3581029.

[34]

J. Lee and A. S. Teja, “Synthesis of LiFePO4 Micro and Nanoparticles in Supercritical Water,” Materials Letters 60 (2006): 2105-2109, https://doi.org/10.1016/j.matlet.2005.12.083.

[35]

S. Wang, H. Yang, L. Feng, et al., “A Simple and Inexpensive Synthesis Route for LiFePO4/C Nanoparticles by Co-Precipitation,” Journal of Power Sources 233 (2013): 43-46, https://doi.org/10.1016/j.jpowsour.2013.01.124.

[36]

Y. Liu and C. Cao, “Enhanced Electrochemical Performance of Nano-Sized LiFePO4/C Synthesized by an Ultrasonic-Assisted Co-Precipitation Method,” Electrochimica Acta 55 (2010): 4694-4699, https://doi.org/10.1016/j.electacta.2010.03.033.

[37]

Y. Ding, Y. Jiang, F. Xu, et al., “Preparation of Nano-Structured LiFePO4/Graphene Composites by Co-Precipitation Method,” Electrochemistry Communications 12 (2010): 10-13, https://doi.org/10.1016/j.elecom.2009.10.023.

[38]

H. Liu, C. Li, H. P. Zhang, L. J. Fu, Y. P. Wu, and H. Q. Wu, “Kinetic Study on LiFePO4/C Nanocomposites Synthesized by Solid State Technique,” Journal of Power Sources 159 (2006): 717-720, https://doi.org/10.1016/j.jpowsour.2005.10.098.

[39]

S. S. Zhang, J. L. Allen, K. Xu, and T. R. Jow, “Optimization of Reaction Condition for Solid-State Synthesis of LiFePO4-C Composite Cathodes,” Journal of Power Sources 147 (2005): 234-240, https://doi.org/10.1016/j.jpowsour.2005.01.004.

[40]

H. C. Kang, D. K. Jun, B. Jin, et al., “Optimized Solid-State Synthesis of LiFePO4 Cathode Materials Using Ball-Milling,” Journal of Power Sources 179 (2008): 340-346, https://doi.org/10.1016/j.jpowsour.2007.12.093.

[41]

T. H. Cho and H. T. Chung, “Synthesis of Olivine-Type LiFePO4 by Emulsion-Drying Method,” Journal of Power Sources 133 (2004): 272-276, https://doi.org/10.1016/j.jpowsour.2004.02.015.

[42]

R. I. Purawiardi, C. R. Ratri, and E. Suwandi, “Perubahan Fasa Dalam Pembuatan Serbuk LiFePO4 Dengan Tiga Tahap Perlakuan Panas Tanpa Pelapisan Karbon [Phase Change in LiFePO4 Powder Making With Three Step Heat Treatment Non Carbon Coating],” Metalurgi 31 (2016): 43-50, http://dx.doi.org/10.14203/metalurgi.v31i1.95.

[43]

J. Lim, S.-W. Kang, J. Moon, et al., “Low-Temperature Synthesis of LiFePO4 Nanocrystals by Solvothermal Route,” Nanoscale Research Letters 7 (2012): 3, https://doi.org/10.1186/1556-276x-7-3.

[44]

D. Rangappa, K. Sone, T. Kudo, and I. Honma, “Directed Growth of Nanoarchitectured LiFePO4 Electrode by Solvothermal Synthesis and Their Cathode Properties,” Journal of Power Sources 195 (2010): 6167-6171, https://doi.org/10.1016/j.jpowsour.2009.11.095.

[45]

Y. Wang, B. Zhu, Y. Wang, and F. Wang, “Solvothermal Synthesis of LiFePO4 Nanorods as High-Performance Cathode Materials for Lithium Ion Batteries,” Ceramics International 42 (2016): 10297-10303, https://doi.org/10.1016/j.ceramint.2016.03.165.

[46]

Y. Hu, M. M. Doeff, R. Kostecki, and R. Fiñones, “Electrochemical Performance of Sol-Gel Synthesized LiFePO4 in Lithium Batteries,” Journal of the Electrochemical Society 151 (2004): A1279, https://doi.org/10.1149/1.1768546.

[47]

S. B. Lee, I. C. Jang, H. H. Lim, V. Aravindan, H. S. Kim, and Y. S. Lee, “Preparation and Electrochemical Characterization of LiFePO4 Nanoparticles With High Rate Capability by a Sol-Gel Method,” Journal of Alloys and Compounds 491 (2010): 668-672, https://doi.org/10.1016/j.jallcom.2009.11.037.

[48]

X. Ma, G. Chen, Q. Liu, G. Zeng, and T. Wu, “Synthesis of LiFePO4/Graphene Nanocomposite and Its Electrochemical Properties as Cathode Material for Li-Ion Batteries,” Journal of Nanomaterials 2015 (2015): 301731, https://doi.org/10.1155/2015/301731.

[49]

M. Vujković, I. Stojković, N. Cvjetićanin, and S. Mentus, “Gel-Combustion Synthesis of LiFePO4/C Composite With Improved Capacity Retention in Aerated Aqueous Electrolyte Solution,” Electrochimica Acta 92 (2013): 248-256, https://doi.org/10.1016/j.electacta.2013.01.030.

[50]

E. Hari Mohan, V. Siddhartha, R. Gopalan, T. Narasinga Rao, and D. Rangappa, “Urea and Sucrose Assisted Combustion Synthesis of LiFePO4/C Nano-Powder for Lithium-Ion Battery Cathode Application,” AIMS Materials Science 1 (2014): 191-201, https://doi.org/10.3934/matersci.2014.4.191.

[51]

R. R. Piticescu, I. A. Tudor, C. R. Ciobota, and R. M. Piticescu, Hydrothermal Synthesis of Nanostructured Materials for Energy Harvesting Applications New Ocular Implant With Enhanced Biocompatibility and Early Vascularization, View Project Virtual Center for Integration of Materials Synhtesis and Processing for Extreme Environments-SUPERMAT View Project, https://www.researchgate.net/publication/281963983.

[52]

K. Byrappa and T. Adschiri, “Hydrothermal Technology for Nanotechnology,” Progress in Crystal Growth and Characterization of Materials 53 (2007): 117-166, https://doi.org/10.1016/j.pcrysgrow.2007.04.001.

[53]

L. Bao, L. Li, G. Xu, et al., “Olivine LiFePO4 Nanocrystallites Embedded in Carbon-Coating Matrix for High Power Li-Ion Batteries,” Electrochimica Acta 222 (2016): 685-692, https://doi.org/10.1016/j.electacta.2016.11.024.

[54]

R. Martins, R. Gonçalves, C. M. Costa, S. Ferdov, and S. Lanceros-Méndez, “Mild Hydrothermal Synthesis and Crystal Morphology Control of LiFePO4 by Lithium Nitrate,” Nano-Structures & Nano-Objects 11 (2017): 82-87, https://doi.org/10.1016/j.nanoso.2017.07.001.

[55]

P. He, X. Zhang, Y.-G. Wang, L. Cheng, and Y.-Y. Xia, “Lithium-Ion Intercalation Behavior of LiFePO4 in Aqueous and Nonaqueous Electrolyte Solutions,” Journal of the Electrochemical Society 155 (2008): A144, https://doi.org/10.1149/1.2815609.

[56]

G. Wu, N. Liu, X. Gao, et al., “A Hydrothermally Synthesized LiFePO4/C Composite With Superior Low-Temperature Performance and Cycle Life,” Applied Surface Science 435 (2018): 1329-1336, https://doi.org/10.1016/j.apsusc.2017.11.276.

[57]

Z. Wang, S. Su, C. Yu, Y. Chen, and D. Xia, “Synthesises, Characterizations and Electrochemical Properties of Spherical-Like LiFePO4 by Hydrothermal Method,” Journal of Power Sources 184 (2008): 633-636, https://doi.org/10.1016/j.jpowsour.2008.04.066.

[58]

K. M. Ø. Jensen, M. Christensen, H. P. Gunnlaugsson, et al., “Defects in Hydrothermally Synthesized LiFePO4 and LiFe1−xMnxPO4 Cathode Materials,” Chemistry of Materials 25 (2013): 2282-2290, https://doi.org/10.1021/cm4008393.

[59]

L. Li, X. Lu, W. Chen, and H. Fang, A New Strategy to Hydrothermally Synthesize Olivine Phosphates, 2019.

[60]

A. V. Murugan, T. Muraliganth, and A. Manthiram, “Comparison of Microwave Assisted Solvothermal and Hydrothermal Syntheses of LiFePO4/C Nanocomposite Cathodes for Lithium Ion Batteries,” Journal of Physical Chemistry C 112 (2008): 14665-14671, https://doi.org/10.1021/jp8053058.

[61]

S. R. Rao and U. V. Varadaraju, “Hydrothermal Synthesis of LiFePO4 Nanorods Composed of Nanoparticles From Vivianite Precursor and Its Electrochemical Performance for Lithium Ion Battery Applications,” Bulletin of Materials Science 38 (2015): 1385-1388, https://www.ias.ac.in/matersci.

[62]

B. Ellis, W. H. Kan, W. R. M. Makahnouk, and L. F. Nazar, “Synthesis of Nanocrystals and Morphology Control of Hydrothermally Prepared LiFePO4,” Journal of Materials Chemistry 17 (2007): 3248-3254, https://doi.org/10.1039/b705443m.

[63]

M. A. M. M. Alsamet and E. Burgaz, “Synthesis and Characterization of Nano-Sized LiFePO4 by Using Consecutive Combination of Sol-Gel and Hydrothermal Methods,” Electrochimica Acta 367 (2021): 137530, https://doi.org/10.1016/j.electacta.2020.137530.

[64]

K. Dokko, S. Koizumi, H. Nakano, and K. Kanamura, “Particle Morphology, Crystal Orientation, and Electrochemical Reactivity of LiFePO4 Synthesized by the Hydrothermal Method at 443 K,” Journal of Materials Chemistry 17 (2007): 4803-4810, https://doi.org/10.1039/b711521k.

[65]

A. Mishra, A. Mehta, S. Basu, et al., “Electrode Materials for Lithium-Ion Batteries,” Materials Science for Energy Technologies 1 (2018): 182-187, https://doi.org/10.1016/j.mset.2018.08.001.

[66]

G. Yang and S. J. Park, “Author Response to Comment on: Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: A Review,” Materials 12 (2019): 3640, https://doi.org/10.3390/ma12071177.

[67]

I. Bilecka, I. Djerdj, and M. Niederberger, “One-Minute Synthesis of Crystalline Binary and Ternary Metal Oxide Nanoparticles,” Chemical Communications (2008): 886-888, https://doi.org/10.1039/b717334b.

[68]

P. M. Pratheeksha, J. S. Rajeshwari, P. J. Daniel, T. N. Rao, and S. Anandan, “Investigation of In-Situ Carbon Coated LiFePO4 as a Superior Cathode Material for Lithium Ion Batteries,” Journal of Nanoscience and Nanotechnology 19 (2019): 3002-3011, https://doi.org/10.1166/jnn.2019.15881.

[69]

J. Liu, R. Jiang, X. Wang, T. Huang, and A. Yu, “The Defect Chemistry of LiFePO4 Prepared by Hydrothermal Method at Different pH Values,” Journal of Power Sources 194 (2009): 536-540, https://doi.org/10.1016/j.jpowsour.2009.05.007.

[70]

G. Yang, H. Ji, H. Liu, K. Huo, J. Fu, and P. K. Chu, Fast Preparation of LiFePO4 Nanoparticles for Lithium Batteries by Microwave-Assisted Hydrothermal Method,” Journal of Nanoscience and Nanotechnology 10 (2010): 980-986, https://doi.org/10.1166/jnn.2010.1890.

[71]

Z. Cabán-Huertas, O. Ayyad, D. P. Dubal, and P. Gómez-Romero, “Aqueous Synthesis of LiFePO4 With Fractal Granularity,” Scientific Reports 6 (2016): 27024, https://doi.org/10.1038/srep27024.

[72]

F. Ruiz-Jorge, A. Benítez, S. Fernández-García, J. Sánchez-Oneto, and J. R. Portela, “Effect of Fast Heating and Cooling in the Hydrothermal Synthesis on LiFePO4 Microparticles,” Industrial & Engineering Chemistry Research 59 (2020): 9318-9327, https://doi.org/10.1021/acs.iecr.0c00518.

[73]

J. Chen and M. Whittingham, “Hydrothermal Synthesis of Lithium Iron Phosphate,” Electrochemistry Communications 8 (2006): 855-858, https://doi.org/10.1016/j.elecom.2006.03.021.

[74]

B. Jin and H. Gu, “Preparation and Characterization of LiFePO4 Cathode Materials by Hydrothermal Method,” Solid State Ionics 178 (2008): 1907-1914, https://doi.org/10.1016/j.ssi.2007.12.057.

[75]

X. Wang, X. Wang, R. Zhang, Y. Wang, and H. Shu, “Hydrothermal Preparation and Performance of LiFePO4 by Using Li3PO4 Recovered From Spent Cathode Scraps as Li Source,” Waste Management 78 (2018): 208-216, https://doi.org/10.1016/j.wasman.2018.05.029.

[76]

X. Qin, X. Wang, H. Xiang, J. Xie, J. Li, and Y. Zhou, “Mechanism for Hydrothermal Synthesis of LiFePO4 Platelets as Cathode Material for Lithium-Ion Batteries,” Journal of Physical Chemistry C 114 (2010): 16806-16812, https://doi.org/10.1021/jp104466e.

[77]

K. Kanamura, S. Koizumi, and K. Dokko, “Hydrothermal Synthesis of LiFePO4 as a Cathode Material for Lithium Batteries,” Journal of Material Science 43 (2008): 2138-2142, https://doi.org/10.1007/s10853-007-2011-1.

[78]

K. Dokko, S. Koizumi, and K. Kanamura, “Electrochemical Reactivity of LiFePO4 Prepared by Hydrothermal Method,” Chemistry Letters 35 (2006): 338-339, https://doi.org/10.1246/cl.2006.338.

[79]

I. Gunawan and H. Wagiyo, “Synthesis of LiFePO4 in the Presence of Organic Reductant by Hydrothermal Method and Its Characterization,” in Macromolecule Symposium (Wiley-VCH Verlag, 2015), 225-230, https://doi.org/10.1002/masy.201550331.

[80]

Y. Park, W. Shin, and J. Lee, “Synthesis of Hollow Spherical LiFePO4 by a Novel Route Using Organic Phosphate,” CrystEngComm 14 (2012): 4612-4617, https://doi.org/10.1039/c2ce25159k.

[81]

A. B. Kanagaraj, H. Al Shibli, T. S. Alkindi, et al., “Hydrothermal Synthesis of LiFePO4 Micro-Particles for Fabrication of Cathode Materials Based on LiFePO4/Carbon Nanotubes Nanocomposites for Li-Ion Batteries,” Ionics 24 (2018): 3685-3690, https://doi.org/10.1007/s11581-018-2662-8.

[82]

C. A. G. Bezerra, R. A. Davoglio, S. R. Biaggio, N. Bocchi, and R. C. Rocha-Filho, “High-Purity LiFePO4 Prepared by a Rapid One-Step Microwave-Assisted Hydrothermal Synthesis,” Journal of Materials Science 56 (2021): 10018-10029, https://doi.org/10.1007/s10853-021-05914-1.

[83]

P. Rosaiah and O. M. Hussain, “Microscopic and Spectroscopic Properties of Hydrothermally Synthesized Nano-Crystalline LiFePO4 Cathode Material,” Journal of Alloys and Compounds 614 (2014): 13-19, https://doi.org/10.1016/j.jallcom.2014.06.072.

[84]

X. Qin, J. Wang, J. Xie, F. Li, L. Wen, and X. Wang, “Hydrothermally Synthesized LiFePO4 Crystals With Enhanced Electrochemical Properties: Simultaneous Suppression of Crystal Growth Along [010] and Antisite Defect Formation,” Physical Chemistry Chemical Physics 14 (2012): 2669-2677, https://doi.org/10.1039/c2cp23433e.

[85]

Q. Song, X. Ou, L. Wang, G. Liang, and Z. Wang, “Effect of pH Value on Particle Morphology and Electrochemical Properties of LiFePO4 by Hydrothermal Method,” Materials Research Bulletin 46 (2011): 1398-1402, https://doi.org/10.1016/j.materresbull.2011.05.015.

[86]

M. Xie, X. Zhang, S. Deng, et al., “The Effects of Supercritical Carbon Dioxide Treatment on the Morphology and Electrochemical Performance of LiFePO4 Cathode Materials,” RSC Advances 3 (2013): 12786-12793, https://doi.org/10.1039/c3ra41133h.

[87]

O. Xiuqin, P. Lin, G. Haichen, W. Yichen, and L. Jianwei, “Temperature-Dependent Crystallinity and Morphology of LiFePO4 Prepared by Hydrothermal Synthesis,” Journal of Materials Chemistry 22 (2012): 9064-9068, https://doi.org/10.1039/c2jm30191a.

[88]

S. Bolloju, R. Rohan, S. T. Wu, et al., “A Green and Facile Approach for Hydrothermal Synthesis of LiFePO4 Using Iron Metal Directly,” Electrochimica Acta 220 (2016): 164-168, https://doi.org/10.1016/j.electacta.2016.10.066.

[89]

J. Wang, B. Ren, M. Hojamberdiev, Y. Xu, and H. Yan, “Sodium Gluconate-Assisted Hydrothermal Synthesis, Characterization and Electrochemical Performance of LiFePO4 Powders,” Advanced Powder Technology 25 (2014): 567-573, https://doi.org/10.1016/j.apt.2013.09.004.

[90]

C. Zhang, X. Huang, Y. Yin, J. Dai, and Z. Zhu, “Hydrothermal Synthesis of Monodispersed LiFePO4 Cathode Materials in Alcohol-Water Mixed Solutions,” Ceramics International 35 (2009): 2979-2982, https://doi.org/10.1016/j.ceramint.2009.02.024.

[91]

H. Yen, R. Rohan, C. Y. Chiou, et al., “Hierarchy Concomitant In Situ Stable Iron(II)−Carbon Source Manipulation Using Ferrocenecarboxylic Acid for Hydrothermal Synthesis of LiFePO4 as High-Capacity Battery Cathode,” Electrochimica Acta 253 (2017): 227-238, https://doi.org/10.1016/j.electacta.2017.09.065.

[92]

Q. Wang, S. Deng, H. Wang, M. Xie, J. Liu, and H. Yan, “Hydrothermal Synthesis of Hierarchical LiFePO4 Microspheres for Lithium Ion Battery,” Journal of Alloys and Compounds 553 (2013): 69-74, https://doi.org/10.1016/j.jallcom.2012.11.041.

[93]

K. Shiraishi, K. Dokko, and K. Kanamura, “Formation of Impurities on Phospho-Olivine LiFePO4 During Hydrothermal Synthesis,” Journal of Power Sources 146 (2005): 555-558, https://doi.org/10.1016/j.jpowsour.2005.03.060.

[94]

G. Meligrana, C. Gerbaldi, A. Tuel, S. Bodoardo, and N. Penazzi, “Hydrothermal Synthesis of High Surface LiFePO4 Powders as Cathode for Li-Ion Cells,” Journal of Power Sources 160 (2006): 516-522, https://doi.org/10.1016/j.jpowsour.2005.12.067.

[95]

K. Dokko, S. Koizumi, K. Sharaishi, and K. Kanamura, “Electrochemical Properties of LiFePO4 Prepared via Hydrothermal Route,” Journal of Power Sources 165 (2007): 656-659, https://doi.org/10.1016/j.jpowsour.2006.10.027.

[96]

B. Pei, H. Yao, W. Zhang, and Z. Yang, “Hydrothermal Synthesis of Morphology-Controlled LiFePO4 Cathode Material for Lithium-Ion Batteries,” Journal of Power Sources 220 (2012): 317-323, https://doi.org/10.1016/j.jpowsour.2012.07.128.

[97]

L. Bao, G. Xu, and M. Wang, “Controllable Synthesis and Morphology Evolution of Hierarchical LiFePO4 Cathode Materials for Li-Ion Batteries,” Materials Characterization 157 (2019): 109927, https://doi.org/10.1016/j.matchar.2019.109927.

[98]

Y. Wang, D. Zhang, C. Chang, L. Deng, and K. Huang, “Controllable Growth of LiFePO4 Microplates of (010) and (001) Lattice Planes for Li Ion Batteries: A Case of the Growth Manner on the Li Ion Diffusion Coefficient and Electrochemical Performance,” Materials Chemistry and Physics 148 (2014): 933-939, https://doi.org/10.1016/j.matchemphys.2014.08.071.

[99]

J. Qian, M. Zhou, Y. Cao, X. Ai, and H. Yang, “Template-Free Hydrothermal Synthesis of Nanoembossed Mesoporous LiFePO4 Microspheres for High-Performance Lithium-Ion Batteries,” Journal of Physical Chemistry C 114 (2010): 3477-3482, https://doi.org/10.1021/jp912102k.

[100]

X. Lou, B. Hu, J. Huang, and T. Li, Hydrothermal Process Synthesizing of LiFePO4 With High-Rate Capability and High Tap Density (Atlantis Press, 2015).

[101]

L. Yang, J. Chen, L. Chen, et al., “LiFePO4 Nanoplates With {010} Exposed Active Planes Prepared by Hydrothermal Method,” Journal of Materials Science: Materials in Electronics 27 (2016): 12258-12263, https://doi.org/10.1007/s10854-016-5383-7.

[102]

M. Lin, X. Wu, B. L. Chen, and J. K. Yuan, “Hydrothermal Synthesis of Corn Cob-Like LiFePO4/C as High Performance Cathode Material for Lithium Ion Batteries,” in 6th Forum on New Materials - Part A (Trans Tech Publications Ltd, 2014), 152-157, https://doi.org/10.4028/www.scientific.net/ast.93.152.

[103]

D. Bhuvaneswari and N. Kalaiselvi, “In Situ Carbon Coated LiFePO4/C Microrods With Improved Lithium Intercalation Behavior,” Physical Chemistry Chemical Physics 16 (2014): 1469-1478, https://doi.org/10.1039/c3cp53966k.

[104]

J. Yang, Z. Li, T. Guang, et al., “Green Synthesis of High-Performance LiFePO4 Nanocrystals in Pure Water,” Green Chemistry 20 (2018): 5215-5223, https://doi.org/10.1039/c8gc02584c.

[105]

S. Khan, R. P. Raj, L. George, et al., “Surfactant-Mediated and Morphology-Controlled Nanostructured LiFePO4/Carbon Composite as a Promising Cathode Material for Li-Ion Batteries,” ChemistryOpen 9 (2020): 23-31, https://doi.org/10.1002/open.201900175.

[106]

L. Lin, Y. Wen, J. O, Y. Guo, and D. Xiao, “X-Ray Diffraction Study of LiFePO4 Synthesized by Hydrothermal Method,” RSC Advances 3 (2013): 14652-14660, https://doi.org/10.1039/c3ra41678j.

[107]

Y. Liu, J. Gu, J. Zhang, et al., “LiFePO4 Nanoparticles Growth With Preferential (010) Face Modulated by Tween-80,” RSC Advances 5 (2015): 9745-9751, https://doi.org/10.1039/c4ra14791j.

[108]

X. Lou and Y. Zhang, “Synthesis of LiFePO4/C Cathode Materials With Both High-Rate Capability and High Tap Density for Lithium-Ion Batteries,” Journal of Materials Chemistry 21 (2011): 4156-4160, https://doi.org/10.1039/c0jm03331f.

[109]

R. Tian, G. Liu, H. Liu, et al., “Very High Power and Superior Rate Capability LiFePO4 Nanorods Hydrothermally Synthesized Using Tetraglycol as Surfactant,” RSC Advances 5 (2015): 1859-1866, https://doi.org/10.1039/c4ra09776a.

[110]

W. Zhou, C. Liu, Z. Wen, et al., “Effects of Defect Chemistry and Kinetic Behavior on Electrochemical Properties for Hydrothermal Synthesis of LiFePO4/C Cathode Materials,” Materials Chemistry and Physics 227 (2019): 56-63, https://doi.org/10.1016/j.matchemphys.2019.01.050.

[111]

W. Yu, L. Wu, J. Zhao, Y. Zhang, and G. Li, “Hydrothermal Synthesis of Spindle-Shape and Craggy-Faced LiFePO4/C Composite Materials for High Power Li-Ion Battery,” Advanced Powder Technology 25 (2014): 1688-1692, https://doi.org/10.1016/j.apt.2014.06.012.

[112]

Y. Liu, J. Gu, J. Zhang, et al., “Controllable Synthesis of Nano-Sized LiFePO4/C via a High Shear Mixer Facilitated Hydrothermal Method for High Rate Li-Ion Batteries,” Electrochimica Acta 173 (2015): 448-457, https://doi.org/10.1016/j.electacta.2015.05.103.

[113]

E. Golestani, M. Javanbakht, H. Ghafarian-Zahmatkesh, H. Beydaghi, and M. Ghaemi, “Tartaric Acid Assisted Carbonization of LiFePO4 Synthesized Through In Situ Hydrothermal Process in Aqueous Glycerol Solution,” Electrochimica Acta 259 (2018): 903-915, https://doi.org/10.1016/j.electacta.2017.10.123.

[114]

J. Li, Q. Qu, L. Zhang, L. Zhang, and H. Zheng, “A Monodispersed Nano-Hexahedral LiFePO4 With Improved Power Capability by Carbon-Coatings,” Journal of Alloys and Compounds 579 (2013): 377-383, https://doi.org/10.1016/j.jallcom.2013.06.097.

[115]

W. Li, Z. Wei, L. Huang, D. Zhu, and Y. Chen, “Plate-Like LiFePO4/C Composite With Preferential (010) Lattice Plane Synthesized by Cetyltrimethylammonium Bromide-Assisted Hydrothermal Carbonization,” Journal of Alloys and Compounds 651 (2015): 34-41, https://doi.org/10.1016/j.jallcom.2015.08.071.

[116]

L. Bao, G. Xu, X. Sun, et al., “Mono-Dispersed LiFePO4@C Core-Shell [001] Nanorods for a High Power Li-Ion Battery Cathode,” Journal of Alloys and Compounds 708 (2017): 685-693, https://doi.org/10.1016/j.jallcom.2017.03.052.

[117]

W. Yu, L. Wu, J. Zhao, Y. Zhang, and G. Li, “Synthesis of LiFePO4/C Nanocomposites via Ionic Liquid Assisted Hydrothermal Method,” Journal of Electroanalytical Chemistry 704 (2013): 214-219, https://doi.org/10.1016/j.jelechem.2013.06.016.

[118]

X. Li, D. Luo, X. Zhang, and Z. Zhang, “Enhancement of Electrochemical Performances for LiFePO4/C With 3D-Grape-Bunch Structure and Selection of Suitable Equivalent Circuit for Fitting EIS Results,” Journal of Power Sources 291 (2015): 75-84, https://doi.org/10.1016/j.jpowsour.2015.05.018.

[119]

K. Vediappan, A. Guerfi, V. Gariépy, et al., “Stirring Effect in Hydrothermal Synthesis of Nano C-LiFePO4,” Journal of Power Sources 266 (2014): 99-106, https://doi.org/10.1016/j.jpowsour.2014.05.005.

[120]

Q. Tan, C. Lv, Y. Xu, and J. Yang, “Mesoporous Composite of LiFePO4 and Carbon Microspheres as Positive-Electrode Materials for Lithium-Ion Batteries,” Particuology 17 (2014): 106-113, https://doi.org/10.1016/j.partic.2014.03.008.

[121]

W. Yu, L. Wu, J. Zhao, Y. Zhang, G. Li, and H. Gai, “Fabrication of Porous Platelike LiFePO4/C Cathode Materials via Hydrothermal Process,” Powder Technology 230 (2012): 219-224, https://doi.org/10.1016/j.powtec.2012.07.034.

[122]

J. Su, X. L. Wu, C. P. Yang, J. S. Lee, J. Kim, and Y. G. Guo, “Self-Assembled LiFePO4/C Nano/Microspheres by Using Phytic Acid as Phosphorus Source,” Journal of Physical Chemistry C 116 (2012): 5019-5024, https://doi.org/10.1021/jp212063e.

[123]

Y. Du, Y. Tang, F. Huang, and C. Chang, “Preparation of Three-Dimensional Free-Standing Nano-LiFePO4/Graphene Composite for High Performance Lithium Ion Battery,” RSC Advances 6 (2016): 52279-52283, https://doi.org/10.1039/c6ra08937b.

[124]

F. Fathollahi, M. Javanbakht, H. Omidvar, and M. Ghaemi, “Improved Electrochemical Properties of LiFePO4/Graphene Cathode Nanocomposite Prepared by One-Step Hydrothermal Method,” Journal of Alloys and Compounds 627 (2015): 146-152, https://doi.org/10.1016/j.jallcom.2014.12.025.

[125]

Y. Long, Y. Shu, X. Ma, and M. Ye, “In-Situ Synthesizing Superior High-Rate LiFePO4/C Nanorods Embedded in Graphene Matrix,” Electrochimica Acta 117 (2014): 105-112, https://doi.org/10.1016/j.electacta.2013.11.106.

[126]

P. Rosaiah, J. Zhu, O. M. Hussain, Z. Liu, and Y. Qiu, “Well-Dispersed Rod-Like LiFePO4 Nanoparticles on Reduced Graphene Oxide With Excellent Electrochemical Performance for Li-Ion Batteries,” Journal of Electroanalytical Chemistry 811 (2018): 1-7, https://doi.org/10.1016/j.jelechem.2018.01.026.

[127]

M. Lin, Y. Chen, B. Chen, et al., “Morphology-Controlled Synthesis of Self-Assembled LiFePO4/C/RGO for High-Performance Li-Ion Batteries,” ACS Applied Materials & Interfaces 6 (2014): 17556-17563, https://doi.org/10.1021/am503346e.

[128]

Y. Shi, S. L. Chou, J. Z. Wang, et al., “Graphene Wrapped LiFePO4/C Composites as Cathode Materials for Li-Ion Batteries With Enhanced Rate Capability,” Journal of Materials Chemistry 22 (2012): 16465-16470, https://doi.org/10.1039/c2jm32649c.

[129]

G. Du, Y. Xi, X. Tian, et al., “One-Step Hydrothermal Synthesis of 3D Porous Microspherical LiFePO4/Graphene Aerogel Composite for Lithium-Ion Batteries,” Ceramics International 45 (2019): 18247-18254, https://doi.org/10.1016/j.ceramint.2019.06.035.

[130]

W. Wei, L. Guo, X. Qiu, P. Qu, M. Xu, and L. Guo, Porous Micro-Spherical LiFePO4/CNT Nanocomposite for High Performance Li Ion Battery Cathode Material, RSC, https://doi.org/10.1039/c0xx00000x.

[131]

G. Qin, S. Xue, Q. Ma, and C. Wang, “The Morphology Controlled Synthesis of 3D Networking LiFePO4 With Multiwalled-Carbon Nanotubes for Li-Ion Batteries,” CrystEngComm 16 (2014): 260-269, https://doi.org/10.1039/c3ce41967c.

[132]

B. Jin, E. M. Jin, K. H. Park, and H. B. Gu, “Electrochemical Properties of LiFePO4-Multiwalled Carbon Nanotubes Composite Cathode Materials for Lithium Polymer Battery,” Electrochemistry Communications 10 (2008): 1537-1540, https://doi.org/10.1016/j.elecom.2008.08.001.

[133]

A. B. Kanagaraj, P. Chaturvedi, H. J. Kim, and D. S. Choi, “Controllable Synthesis of LiFePO4 Microrods and Its Superior Electrochemical Performance,” Materials Letters 283 (2021): 128737, https://doi.org/10.1016/j.matlet.2020.128737.

[134]

D. V. Trinh, M. T. T. Nguyen, H. T. M. Dang, et al., “Hydrothermally Synthesized Nanostructured LiMnxFe1−xPO4 (x = 0-0.3) Cathode Materials With Enhanced Properties for Lithium-Ion Batteries,” Scientific Reports 11 (2021): 12280, https://doi.org/10.1038/s41598-021-91881-1.

[135]

Y. Fu, A. Tang, H. Chen, G. Xu, H. Song, and R. Peng, “Synthesis and Characterization of LiVOPO4/V2O5 Composite Cathode for Lithium Ion Batteries,” Ionics 26 (2020): 1629-1634, https://doi.org/10.1007/s11581-020-03499-4.

[136]

M. J. Loveridge, M. J. Lain, I. D. Johnson, et al., “Towards High Capacity Li-Ion Batteries Based on Silicon-Graphene Composite Anodes and Sub-Micron V-Doped LiFePO4 Cathodes,” Scientific Reports 6 (2016): 37787, https://doi.org/10.1038/srep37787.

[137]

Y. Liu, Y. J. Gu, G. Y. Luo, et al., “Ni-Doped LiFePO4/C as High-Performance Cathode Composites for Li-Ion Batteries,” Ceramics International 46 (2020): 14857-14863, https://doi.org/10.1016/j.ceramint.2020.03.011.

[138]

N. Patima, Y. Abliz, and I. Kiminori, “Synthesis and Optical-Electrochemical Gas Sensing Applications of Ni-Doped LiFePO4 Nano-Particles,” New Journal of Chemistry 40 (2016): 295-301, https://doi.org/10.1039/C5NJ02018B.

[139]

M. Talebi-Esfandarani and O. Savadogo, “Enhancement of Electrochemical Properties of Platinum Doped LiFePO4/C Cathode Material Synthesized Using Hydrothermal Method,” Solid State Ionics 261 (2014): 81-86, https://doi.org/10.1016/j.ssi.2014.03.028.

[140]

D. Tong, Y. Li, W. Chu, P. Wu, and F. Luo, “Preparation and Characterization of LiFe0.975Rh0.025PO4 Nanorods Using the Hydrothermal Method,” Dalton Transactions 40 (2011): 4087-4094, https://doi.org/10.1039/c0dt01643h.

[141]

Y. Xu, W. Shen, A. Zhang, H. Liu, and Z. Ma, “Template-Free Hydrothermal Synthesis of Li2FeSiO4 Hollow Spheres as Cathode Materials for Lithium-Ion Batteries,” Journal of Materials Chemistry A 2 (2014): 12982-12990, https://doi.org/10.1039/c4ta02384f.

[142]

Y. Meng, Y. Li, J. Xia, et al., “F-Doped LiFePO4@N/B/F-Doped Carbon as High Performance Cathode Materials for Li-Ion Batteries,” Applied Surface Science 476 (2019): 761-768, https://doi.org/10.1016/j.apsusc.2019.01.139.

[143]

X. Q. Ou, G. C. Liang, J. S. Liang, S. Z. Xu, and X. Zhao, “LiFePO4 Doped With Magnesium Prepared by Hydrothermal Reaction in Glucose Solution,” Chinese Chemical Letters 19 (2008): 345-349, https://doi.org/10.1016/j.cclet.2007.10.052.

[144]

B. Pei, Q. Wang, W. Zhang, Z. Yang, and M. Chen, “Enhanced Performance of LiFePO4 Through Hydrothermal Synthesis Coupled With Carbon Coating and Cupric Ion Doping,” Electrochimica Acta 56 (2011): 5667-5672, https://doi.org/10.1016/j.electacta.2011.04.024.

[145]

F. Lu, Y. Zhou, J. Liu, and Y. Pan, “Enhancement of F-Doping on the Electrochemical Behavior of Carbon-Coated LiFePO4 Nanoparticles Prepared by Hydrothermal Route,” Electrochimica Acta 56 (2011): 8833-8838, https://doi.org/10.1016/j.electacta.2011.07.079.

[146]

Q. Q. Xiong, J. J. Lou, X. J. Teng, et al., “Controllable Synthesis of N-C@LiFePO4 Nanospheres as Advanced Cathode of Lithium Ion Batteries,” Journal of Alloys and Compounds 743 (2018): 377-382, https://doi.org/10.1016/j.jallcom.2018.01.350.

[147]

D. Yi, X. Cui, N. Li, L. Zhang, and D. Yang, “Enhancement of Electrochemical Performance of LiFePO4@C by Ga Coating,” ACS Omega 5 (2020): 9752-9758, https://doi.org/10.1021/acsomega.9b04165.

[148]

R. Zhao, I. M. Hung, Y. T. Li, H. Chen, and C. P. Lin, “Synthesis and Properties of Co-Doped LiFePO4 as Cathode Material via a Hydrothermal Route for Lithium-Ion Batteries,” Journal of Alloys and Compounds 513 (2012): 282-288, https://doi.org/10.1016/j.jallcom.2011.10.037.

[149]

J. Yang, Y. Bai, C. Qing, and W. Zhang, “Electrochemical Performances of Co-Doped LiFePO4/C Obtained by Hydrothermal Method,” Journal of Alloys and Compounds 509 (2011): 9010-9014, https://doi.org/10.1016/j.jallcom.2011.07.021.

[150]

T. T. Zhan, W. F. Jiang, C. Li, et al., “High Performed Composites of LiFePO4/3DG/C Based on FePO4 by Hydrothermal Method,” Electrochimica Acta 246 (2017): 322-328, https://doi.org/10.1016/j.electacta.2017.05.151.

[151]

A. Chairunnisa, S. A. Wulandari, S. Salsabila, et al., “Synthesis of LiFePO4 (Lithium Iron Phosphate) With Several Methods: A Review,” RHAZES: Green and Applied Chemistry 10 (2020): 49-81.

[152]

X. Zhang, Y. Chen, N. Zhao, H. Liu, and Y. Wei, “Citrate Modified Ferrihydrite Microstructures: Facile Synthesis, Strong Adsorption and Excellent Fenton Like Catalytic Properties,” RSC Advances 4 (2014): 21575-21583, https://doi.org/10.1039/C4RA00978A.

[153]

D. Vernardou, “Recent Report on the Hydrothermal Growth of LiFePO4 as a Cathode Material,” Coatings 12 (2022): 1543, https://doi.org/10.3390/coatings12101543.

[154]

Y. Liu, W. Zhang, and J. Jiang, “Synthesis, Structure and Electrochemical Performance of LiFePO4/C,” Asian Journal of Chemistry 25 (2013): 831-834, https://doi.org/10.14233/ajchem.2013.12928.

[155]

N. Chawla, N. Bharti, and S. Singh, “Recent Advances in Non-Flammable Electrolytes for Safer Lithium-Ion Batteries,” Batteries 5 (2019): 19, https://doi.org/10.3390/batteries5010019.

[156]

Q. Lin, K. Su, Y. Huang, et al., “Molecular Crystal Structure Simulations and Structure-Magnetic Properties of LiFePO4 Composite Particles Optimized by La,” Molecules 29 (2024): 3933, https://doi.org/10.3390/molecules29163933.

[157]

J. Hu, W. Huang, L. Yang, and F. Pan, “Structure and Performance of the LiFePO4 Cathode Material: From the Bulk to the Surface,” Nanoscale 12 (2020): 15036-15044, https://doi.org/10.1039/D0NR03776A.

[158]

J. Molenda, A. Kulka, A. Milewska, W. Zając, and K. Świerczek, “Structural, Transport and Electrochemical Properties of LiFePO4 Substituted in Lithium and Iron Sublattices (Al, Zr, W, Mn, Co and Ni),” Materials 6 (2013): 1656-1687, https://doi.org/10.3390/ma6051656.

[159]

G. Xiaoying, B. Yuanyuan, L. Wei, Z. Siqin, and H. Chao, “Current Research Status on the Structural Properties and Modification of LiFePO4 cathode Materials,” Reaction Chemistry & Engineering 9 (2024): 2830-2845, https://doi.org/10.1039/D4RE00263F.

[160]

T. P. Satya, A. Rifai, T. Arini, L. H. Lalasari, I. Santoso, and Harsojo, “Structural and Electrochemical Properties of LiFePO4 Cathode Synthesized by Solid-State Reaction Using FeC2O4·2H2O Precursor From Local Indonesian Ilmenite Mineral,” Emergent Materials 7 (2024): 1675-1682, https://doi.org/10.1007/s42247-024-00668-3.

[161]

M. Singh, B. Singh, and M. Willert-Porada, “Reaction Mechanism and Morphology of the LiFePO4 Materials Synthesized by Chemical Solution Deposition and Solid-State Reaction,” Journal of Electroanalytical Chemistry 790 (2017): 11-19, https://doi.org/10.1016/j.jelechem.2017.02.043.

[162]

B. Starke, S. Seidlmayer, S. Jankowsky, O. Dolotko, R. Gilles, and K. H. Pettinger, “Influence of Particle Morphologies of LiFePO4 on Water- and Solvent-Based Processing and Electrochemical Properties,” Sustainability 9 (2017): 888, https://doi.org/10.3390/su9060888.

[163]

J. Seher and M. Fröba, “Shape Matters: The Effect of Particle Morphology on the Fast-Charging Performance of LiFePO4/C Nanoparticle Composite Electrodes,” ACS Omega 6 (2021): 24062-24069, https://doi.org/10.1021/acsomega.1c03432.

[164]

H. El-Shinawi, E. J. Cussen, and S. A. Corr, “Morphology-Directed Synthesis of LiFePO4 and LiCoPO4 From Nanostructured Li1+2xPO3+x,” Inorganic Chemistry 58 (2019): 6946-6949, https://doi.org/10.1021/acs.inorgchem.9b00517.

[165]

M. Buga, A. Rizoiu, C. Bubulinca, et al., “Study of LiFePO4 Electrode Morphology for Li-Ion Battery Performance,” Revista de Chimie 69 (2018): 549-552, https://doi.org/10.37358/rc.18.3.6146.

[166]

H. Li and M. A. Buckingham, “Silicon Quantum Dots Inlaid Micron Graphite Anode for Fast Chargeable and High Energy Density Li-Ion Batteries,” Frontiers in Chemistry 10 (2022): 1091268, https://doi.org/10.3389/FCHEM.2022.1091268/BIBTEX.

[167]

X. Zhang, Z. Bi, W. He, G. Yang, H. Liu, and Y. Yue, “Fabricating High-Energy Quantum Dots in Ultra-Thin LiFePO4 Nanosheets Using a Multifunctional High-Energy Biomolecule—ATP,” Energy & Environmental Science 7 (2014): 2285-2294, https://doi.org/10.1039/C3EE44187C.

[168]

Z. Wang, H. Che, W. Lu, et al., “Application of Inorganic Quantum Dots in Advanced Lithium-Sulfur Batteries,” Advanced Science 10 (2023): 2301355, https://doi.org/10.1002/advs.202301355.

[169]

A. M. Kadim, “Fabrication of Nano Battery From CdS Quantum Dots and Organic Polymer,” Kuwait Journal of Science 49, no. 1 (2022): 1-9.

[170]

B. Ramasubramanian, S. Sundarrajan, V. Chellappan, M. V. Reddy, S. Ramakrishna, and K. Zaghib, “Recent Development in Carbon-LiFePO4 Cathodes for Lithium-Ion Batteries: A Mini Review,” Batteries 8 (2022): 133, https://doi.org/10.3390/BATTERIES8100133.

[171]

B. Wang, Y. Xie, T. Liu, et al., “LiFePO4 Quantum-Dots Composite Synthesized by a General Microreactor Strategy for Ultra-High-Rate Lithium Ion Batteries,” Nano Energy 42 (2017): 363-372, https://doi.org/10.1016/j.nanoen.2017.11.040.

[172]

A. Machín, K. Fontánez, J. C. Arango, et al., “One-Dimensional (1d) Nanostructured Materials for Energy Applications,” Materials 14 (2021): 2609, https://doi.org/10.3390/ma14102609.

[173]

J. Y. Cheong, S. H. Cho, J. Lee, J. W. Jung, C. Kim, and I. D. Kim, “Multifunctional 1D Nanostructures Toward Future Batteries: A Comprehensive Review,” Advanced Functional Materials 32 (2022): 2208374, https://doi.org/10.1002/adfm.202208374.

[174]

C. Su, L. Xu, B. Wu, and C. Zhang, “Synthesis of Spindle-Shaped Nanoporous C-LiFePO4 Composite and Its Application as a Cathodes Material in Lithium Ion Batteries,” Electrochimica Acta 56 (2011): 10204-10209, https://doi.org/10.1016/j.electacta.2011.09.004.

[175]

X. Zang, T. Wang, Z. Han, L. Li, and X. Wu, “Recent Advances of 2D Nanomaterials in the Electrode Materials of Lithium-Ion Batteries,” NANO 14 (2019): 1930001, https://doi.org/10.1142/S1793292019300019.

[176]

Z. Hu, Q. Liu, S. L. Chou, and S. X. Dou, “Two-Dimensional Material-Based Heterostructures for Rechargeable Batteries,” Cell Reports Physical Science 2 (2021): 100286, https://doi.org/10.1016/j.xcrp.2020.100286.

[177]

J. Mei, Y. Zhang, T. Liao, Z. Sun, and S. X. Dou, “Strategies for Improving the Lithium-Storage Performance of 2D Nanomaterials,” National Science Review 5 (2018): 389-416, https://doi.org/10.1093/nsr/nwx077.

[178]

B. Liu, J. G. Zhang, and G. Shen, “Pursuing Two-Dimensional Nanomaterials for Flexible Lithium-Ion Batteries,” Nano Today 11 (2016): 82-97, https://doi.org/10.1016/j.nantod.2016.02.003.

[179]

R. Rojaee and R. Shahbazian-Yassar, “Two-Dimensional Materials to Address the Lithium Battery Challenges,” ACS Nano 14 (2020): 2628-2658, https://doi.org/10.1021/acsnano.9b08396.

[180]

J. Liu, J. Long, S. Du, B. Sun, S. Zhu, and J. Li, “Three-Dimensionally Porous Li-Ion and Li-S Battery Cathodes: A Mini Review for Preparation Methods and Energy-Storage Performance,” Nanomaterials 9 (2019): 441, https://doi.org/10.3390/nano9030441.

[181]

X. Tian, Y. Zhou, X. Tu, Z. Zhang, and G. Du, “Well-Dispersed LiFePO4 Nanoparticles Anchored on a Three-Dimensional Graphene Aerogel as High-Performance Positive Electrode Materials for Lithium-Ion Batteries,” Journal of Power Sources 340 (2017): 40-50, https://doi.org/10.1016/j.jpowsour.2016.11.049.

[182]

H. Shu, X. Wang, Q. Wu, et al., “The Effect of Ammonia Concentration on the Morphology and Electrochemical Properties of LiFePO4 Synthesized by Ammonia Assisted Hydrothermal Route,” Electrochimica Acta 76 (2012): 120-129, https://doi.org/10.1016/j.electacta.2012.04.156.

[183]

Y. Zhang, J. A. Alarco, A. S. Best, G. A. Snook, P. C. Talbot, and J. Y. Nerkar, “Re-Evaluation of Experimental Measurements for the Validation of Electronic Band Structure Calculations for LiFePO4 and FePO4,” RSC Advances 9 (2019): 1134-1146, https://doi.org/10.1039/c8ra09154d.

[184]

Q. Zhao, S. Zhang, C. Wang, et al., “Combined First-Principles and Experimental Studies of a V-Doped LiFePO4/C Composite as a Cathode Material for Lithium-Ion Batteries,” International Journal of Electrochemical Science 16 (2021): 21053, https://doi.org/10.20964/2021.05.01.

[185]

P. Zhang, D. Zhang, L. Huang, Q. Wei, M. Lin, and X. Ren, “First-Principles Study on the Electronic Structure of a LiFePO4 (0 1 0) Surface Adsorbed With Carbon,” Journal of Alloys and Compounds 540 (2012): 121-126, https://doi.org/10.1016/j.jallcom.2012.06.049.

[186]

F. Astuti, V. L. Maghfirohtuzzoimah, S. H. Intifadhah, et al., “Local Structure and Electronic Structure of LiFePO4 as a Cathode for Lithium-Ion Batteries,” Journal of Physics: Conference Series 1951 (2021): 012007, https://doi.org/10.1088/1742-6596/1951/1/012007.

[187]

F. Zhou, K. Kang, T. Maxisch, G. Ceder, and D. Morgan, “The Electronic Structure and Band Gap of LiFePO4 and LiMnPO4,” Solid State Communications 132 (2004): 181-186, https://doi.org/10.1016/j.ssc.2004.07.055.

RIGHTS & PERMISSIONS

2025 The Author(s). Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

64

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/