Electrolyte Design Toward High-Performance Zinc-Iodine Batteries: Progress, Challenges, and Prospects

Fei Huang , Weihua Xu , Yang He , Dongdong Li , Yi Tan , Huibing He

Battery Energy ›› 2025, Vol. 4 ›› Issue (5) : e70036

PDF
Battery Energy ›› 2025, Vol. 4 ›› Issue (5) : e70036 DOI: 10.1002/bte2.20250017
REVIEW

Electrolyte Design Toward High-Performance Zinc-Iodine Batteries: Progress, Challenges, and Prospects

Author information +
History +
PDF

Abstract

Aqueous rechargeable zinc-iodine (Zn-I2) batteries have emerged as a promising energy storage solution, offering benefits such as affordability, high energy density, and enhanced safety. However, challenges like the thermodynamic instability of the iodine cathode and undesirable interfacial reactions at the zinc anode lead to issues such as slow redox kinetics, multiple iodide shuttles, and zinc dendrites. This paper reviews the basic working principles of Zn-I2 batteries, describes the scientific problems within the iodine conversion and zinc stripping-plating processes, and details specific strategies to solve the Zn-I2 battery problems with a focus on the electrolyte optimization. In view of the fact that aqueous Zn-I2 batteries are still in their infancy, the review aims to provide insights for optimizing their design and advancing their real-world applications.

Keywords

aqueous zinc-ion battery / iodide cathode / redox kinetics / zinc anode / zinc-iodine batteries

Cite this article

Download citation ▾
Fei Huang, Weihua Xu, Yang He, Dongdong Li, Yi Tan, Huibing He. Electrolyte Design Toward High-Performance Zinc-Iodine Batteries: Progress, Challenges, and Prospects. Battery Energy, 2025, 4(5): e70036 DOI:10.1002/bte2.20250017

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Han, D. Chen, Q. Lu, and G. Fang, “Aqueous Rechargeable Zn-Iodine Batteries: Issues, Strategies and Perspectives,” Small 20, no. 18 (2024): 2310293, https://doi.org/10.1002/smll.202310293.

[2]

L. Tang, H. Peng, J. Kang, et al., “Zn-Based Batteries for Sustainable Energy Storage: Strategies and Mechanisms,” Chemical Society Reviews 53, no. 10 (2024): 4877-4925, https://doi.org/10.1039/D3CS00295K.

[3]

J. Zheng, M. S. Kim, Z. Tu, S. Choudhury, T. Tang, and L. A. Archer, “Regulating Electrodeposition Morphology of Lithium: Towards Commercially Relevant Secondary Li Metal Batteries,” Chemical Society Reviews 49, no. 9 (2020): 2701-2750, https://doi.org/10.1039/C9CS00883G.

[4]

R. Jia, C. Wei, B. Ma, et al., “Biopolymer-Based Gel Electrolytes for Advanced Zinc Ion Batteries: Progress and Perspectives,” Advanced Functional Materials 35 (2024): 2417498, https://doi.org/10.1002/adfm.202417498.

[5]

Z. Zhang, Y. Li, F. Mo, et al., “Mbene With Redox-Active Terminal Groups for an Energy-Dense Cascade Aqueous Battery,” Advanced Materials 36, no. 16 (2024): 2311914, https://doi.org/10.1002/adma.202311914.

[6]

W. Li, H. Xu, H. Zhang, et al., “Designing Ternary Hydrated Eutectic Electrolyte Capable of Four-Electron Conversion for Advanced Zn-I2 Full Batteries,” Energy & Environmental Science 16, no. 10 (2023): 4502-4510, https://doi.org/10.1039/D3EE01567J.

[7]

J. Wu, J. L. Yang, B. Zhang, and H. J. Fan, “Immobilizing Polyiodides With Expanded Zn2+ Channels for High-Rate Practical Zinc-Iodine Battery,” Advanced Energy Materials 14, no. 3 (2024): 2302738, https://doi.org/10.1002/aenm.202302738.

[8]

W. Gao, S. Cheng, Y. Zhang, E. Xie, and J. Fu, “Efficient Charge Storage in Zinc-Iodine Batteries Based on Pre-Embedded Iodine-Ions With Reduced Electrochemical Reaction Barrier and Suppression of Polyiodide Self-Shuttle Effect,” Advanced Functional Materials 33, no. 17 (2023): 2211979, https://doi.org/10.1002/adfm.202211979.

[9]

H. Qiu, R. Hu, X. Du, et al., “Eutectic Crystallization Activates Solid-State Zinc-Ion Conduction,” Angewandte Chemie 134, no. 2 (2022): e202113086, https://doi.org/10.1002/ange.202113086.

[10]

F. Wang, J. Tseng, Z. Liu, et al., “A Stimulus-Responsive Zinc-Iodine Battery With Smart Overcharge Self-Protection Function,” Advanced Materials 32, no. 16 (2020): 2000287, https://doi.org/10.1002/adma.202000287.

[11]

S. J. Zhang, J. Hao, H. Li, et al., “Polyiodide Confinement by Starch Enables Shuttle-Free Zn-Iodine Batteries,” Advanced Materials 34, no. 23 (2022): 2201716, https://doi.org/10.1002/adma.202201716.

[12]

Y. Wang, X. Jin, J. Xiong, et al., “Ultrastable Electrolytic Zn-I2 Batteries Based on Nanocarbon Wrapped by Highly Efficient Single-Atom Fe-NC Iodine Catalysts,” Advanced Materials 36, no. 30 (2024): 2404093, https://doi.org/10.1002/adma.202404093.

[13]

Y. Ji, J. Xie, Z. Shen, et al., “Advanced Zinc-Iodine Batteries With Ultrahigh Capacity and Superior Rate Performance Based on Reduced Graphene Oxide and Water-in-Salt Electrolyte,” Advanced Functional Materials 33, no. 10 (2023): 2210043, https://doi.org/10.1002/adfm.202210043.

[14]

Y. Lyu, J. A. Yuwono, P. Wang, et al., “Organic pH Buffer for Dendrite-Free and Shuttle-Free Zn-I2 Batteries,” Angewandte Chemie International Edition 62, no. 21 (2023): e202303011, https://doi.org/10.1002/anie.202303011.

[15]

Y. Li, J. Chen, P. Cai, and Z. Wen, “An Electrochemically Neutralized Energy-Assisted Low-Cost Acid-Alkaline Electrolyzer for Energy-Saving Electrolysis Hydrogen Generation,” Journal of Materials Chemistry A 6, no. 12 (2018): 4948-4954, https://doi.org/10.1039/C7TA10374C.

[16]

H. Chen, X. Li, K. Fang, H. Wang, J. Ning, and Y. Hu, “Aqueous Zinc-Iodine Batteries: From Electrochemistry to Energy Storage Mechanism,” Advanced Energy Materials 13, no. 41 (2023): 2302187, https://doi.org/10.1002/aenm.202302187.

[17]

M. Liu, Q. Chen, X. Cao, D. Tan, J. Ma, and J. Zhang, “Physicochemical Confinement Effect Enables High-Performing Zinc-Iodine Batteries,” Journal of the American Chemical Society 144, no. 47 (2022): 21683-21691, https://doi.org/10.1021/jacs.2c09445.

[18]

P. Hei, Y. Sai, W. Li, et al., “Diatomic Catalysts for Aqueous Zinc-Iodine Batteries: Mechanistic Insights and Design Strategies,” Angewandte Chemie International Edition 63, no. 49 (2024): e202410848, https://doi.org/10.1002/anie.202410848.

[19]

D. Lin and Y. Li, “Recent Advances of Aqueous Rechargeable Zinc-Iodine Batteries: Challenges, Solutions, and Prospects,” Advanced Materials 34, no. 23 (2022): 2108856, https://doi.org/10.1002/adma.202108856.

[20]

F. Urbain, V. Smirnov, J. P. Becker, et al., “Multijunction Si Photocathodes With Tunable Photovoltages From 2.0 V to 2.8 V for Light Induced Water Splitting,” Energy & Environmental Science 9, no. 1 (2016): 145-154, https://doi.org/10.1039/C5EE02393A.

[21]

T. Liu, H. Wang, C. Lei, et al., “Recognition of the Catalytic Activities of Graphitic N for Zinc-Iodine Batteries,” Energy Storage Materials 53 (2022): 544-551, https://doi.org/10.1016/j.ensm.2022.09.028.

[22]

Q. Zhao, Y. Lu, Z. Zhu, Z. Tao, and J. Chen, “Rechargeable Lithium-Iodine Batteries With Iodine/Nanoporous Carbon Cathode,” Nano Letters 15, no. 9 (2015): 5982-5987, https://doi.org/10.1021/acs.nanolett.5b02116.

[23]

D. Gong, B. Wang, J. Zhu, et al., “An Iodine Quantum Dots Based Rechargeable Sodium-Iodine Battery,” Advanced Energy Materials 7, no. 3 (2017): 1601885, https://doi.org/10.1002/aenm.201601885.

[24]

L. Yan, S. Zhang, Q. Kang, et al., “Iodine Conversion Chemistry in Aqueous Batteries: Challenges, Strategies, and Perspectives,” Energy Storage Materials 54 (2023): 339-365, https://doi.org/10.1016/j.ensm.2022.10.027.

[25]

H. Pan, B. Li, D. Mei, et al., “Controlling Solid-Liquid Conversion Reactions for a Highly Reversible Aqueous Zinc-Iodine Battery,” ACS Energy Letters 2, no. 12 (2017): 2674-2680, https://doi.org/10.1021/acsenergylett.7b00851.

[26]

L. Wang, B. Zhang, W. Zhou, et al., “Tandem Chemistry With Janus Mesopores Accelerator for Efficient Aqueous Batteries,” Journal of the American Chemical Society 146, no. 9 (2024): 6199-6208, https://doi.org/10.1021/jacs.3c14019.

[27]

J. Ma, M. Liu, Y. He, and J. Zhang, “Iodine Redox Chemistry in Rechargeable Batteries,” Angewandte Chemie International Edition 60, no. 23 (2021): 12636-12647, https://doi.org/10.1002/anie.202009871.

[28]

Y. Kang, G. Chen, H. Hua, et al., “A Janus Separator Based on Cation Exchange Resin and Fe Nanoparticles-Decorated Single-Wall Carbon Nanotubes With Triply Synergistic Effects for High-Areal Capacity Zn−I2 Batteries,” Angewandte Chemie International Edition 62, no. 22 (2023): e202300418, https://doi.org/10.1002/anie.202300418.

[29]

K. K. Sonigara, J. Zhao, H. K. Machhi, G. Cui, and S. S. Soni, “Self-Assembled Solid-State Gel Catholyte Combating Iodide Diffusion and Self-Discharge for a Stable Flexible Aqueous Zn-I2 Battery,” Advanced Energy Materials 10, no. 47 (2020): 2001997, https://doi.org/10.1002/aenm.202001997.

[30]

D. Guan, Z. Deng, W. Luo, et al., “π-d Conjugated Coordination Mediated Catalysis for Four-Electron-Transfer Fast-Charging Aqueous Zinc-Iodine Batteries,” Matter 8 (2025): 101932, https://doi.org/10.1016/j.matt.2024.11.026.

[31]

H. Wu, J. Hao, S. Zhang, et al., “Aqueous Zinc-Iodine Pouch Cells With Long Cycling Life and Low Self-Discharge,” Journal of the American Chemical Society 146, no. 24 (2024): 16601-16608, https://doi.org/10.1021/jacs.4c03518.

[32]

D. Yin, B. Li, L. Zhao, et al., “Polymeric Iodine Transport Layer Enabled High Areal Capacity Dual Plating Zinc-Iodine Battery,” Angewandte Chemie International Edition 64 (2024): e202418069, https://doi.org/10.1002/anie.202418069.

[33]

W. Gao, S. Cheng, Y. Zhang, E. Xie, and J. Fu, “Efficient Charge Storage in Zinc-Iodine Batteries Based on Pre-Embedded Iodine-Ions With Reduced Electrochemical Reaction Barrier and Suppression of Polyiodide Self-Shuttle Effect,” Advanced Functional Materials 33, no. 17 (2023): 2211979, https://doi.org/10.1002/adfm.202211979.

[34]

S. J. Zhang, J. Hao, H. Wu, Q. Chen, C. Ye, and S. Z. Qiao, “Protein Interfacial Gelation Toward Shuttle-Free and Dendrite-Free Zn-Iodine Batteries,” Advanced Materials 36, no. 35 (2024): 2404011, https://doi.org/10.1002/adma.202404011.

[35]

D. Lin and Y. Li, “Recent Advances of Aqueous Rechargeable Zinc-Iodine Batteries: Challenges, Solutions, and Prospects,” Advanced Materials 34, no. 23 (2022): 2108856, https://doi.org/10.1002/adma.202108856.

[36]

F. Wei, T. Zhang, H. Xu, et al., “2D Mesoporous Naphthalene-Based Conductive Heteroarchitectures Toward Long-Life, High-Capacity Zinc-Iodine Batteries,” Advanced Functional Materials 34, no. 4 (2024): 2310693, https://doi.org/10.1002/adfm.202310693.

[37]

M. Mousavi, G. Jiang, J. Zhang, et al., “Decoupled Low-Cost Ammonium-Based Electrolyte Design for Highly Stable Zinc-Iodine Redox Flow Batteries,” Energy Storage Materials 32 (2020): 465-476, https://doi.org/10.1016/j.ensm.2020.06.031.

[38]

L. Ma, Y. Ying, S. Chen, et al., “Electrocatalytic Iodine Reduction Reaction Enabled by Aqueous Zinc-Iodine Battery With Improved Power and Energy Densities,” Angewandte Chemie International Edition 60, no. 7 (2021): 3791-3798, https://doi.org/10.1002/anie.202014447.

[39]

S. Wang, Y. Zhao, H. Lv, et al., “Low-Concentration Redox-Electrolytes for High-Rate and Long-Life Zinc Metal Batteries,” Small 20, no. 50 (2024): 2207664, https://doi.org/10.1002/smll.202207664.

[40]

Z. Pei, Z. Zhu, D. Sun, et al., “Review of the I/I3− Redox Chemistry in Zn-Iodine Redox Flow Batteries,” Materials Research Bulletin 141 (2021): 111347, https://doi.org/10.1016/j.materresbull.2021.111347.

[41]

F. Wang, W. Liang, X. Liu, et al., “A Bifunctional Electrolyte Additive Features Preferential Coordination With Iodine Toward Ultralong-Life Zinc-Iodine Batteries,” Advanced Energy Materials 14, no. 21 (2024): 2400110, https://doi.org/10.1002/aenm.202400110.

[42]

J. Wang, H. Xu, R. Zhang, G. Sun, H. Dou, and X. Zhang, “Rational Electrolyte Design and Electrode Regulation for Boosting High-Capacity Zn-Iodine Fiber-Shaped Batteries With Four-Electron Redox Reactions,” Nanoscale 16, no. 13 (2024): 6596-6602, https://doi.org/10.1039/D3NR06195G.

[43]

T. Liu, C. Lei, H. Wang, et al., “Aqueous Electrolyte With Weak Hydrogen Bonds for Four-Electron Zinc-Iodine Battery Operates in a Wide Temperature Range,” Advanced Materials 36, no. 32 (2024): 2405473, https://doi.org/10.1002/adma.202405473.

[44]

C. Wang, X. Ji, J. Liang, et al., “Activating and Stabilizing a Reversible Four Electron Redox Reaction of I/I+ for Aqueous Zn-Iodine Battery,” Angewandte Chemie International Edition 63, no. 25 (2024): e202403187, https://doi.org/10.1002/anie.202403187.

[45]

T. C. Li, Y. Lim, X. L. Li, et al., “A Universal Additive Strategy to Reshape Electrolyte Solvation Structure Toward Reversible Zn Storage,” Advanced Energy Materials 12, no. 15 (2022): 2103231, https://doi.org/10.1002/aenm.202103231.

[46]

J. Chen, W. Zhao, J. Jiang, et al., “Challenges and Perspectives of Hydrogen Evolution-Free Aqueous Zn-Ion Batteries,” Energy Storage Materials 59 (2023): 102767, https://doi.org/10.1016/j.ensm.2023.04.006.

[47]

W. Lu, C. Xie, H. Zhang, and X. Li, “Inhibition of Zinc Dendrite Growth in Zinc-Based Batteries,” Chemsuschem 11, no. 23 (2018): 3996-4006, https://doi.org/10.1002/cssc.201801657.

[48]

Y. Gong, B. Wang, H. Ren, et al., “Recent Advances in Structural Optimization and Surface Modification on Current Collectors for High-Performance Zinc Anode: Principles, Strategies, and Challenges,” Nano-Micro Letters 15, no. 1 (2023): 208, https://doi.org/10.1007/s40820-023-01177-4.

[49]

Y. Ding, B. Ling, X. Zhao, et al., “Porous Zinc Metal Anodes for Aqueous Zinc-Ion Batteries: Advances and Prospectives,” Energy Materials and Devices 2, no. 3 (2024): 9370040, https://doi.org/10.26599/EMD.2024.9370040.

[50]

B. Li, S. Liu, Y. Geng, et al., “Achieving Stable Zinc Metal Anode via Polyaniline Interface Regulation of Zn Ion Flux and Desolvation,” Advanced Functional Materials 34, no. 5 (2024): 2214033, https://doi.org/10.1002/adfm.202214033.

[51]

Q. Yang, Q. Li, Z. Liu, et al., “Dendrites in Zn-Based Batteries,” Advanced Materials 32, no. 48 (2020): 2001854, https://doi.org/10.1002/adma.202001854.

[52]

B. Fu, G. Liu, Y. Zhang, et al., “Zn Powder-Based Anodes for Aqueous Zn Metal Batteries: Strategies, Structures, and Perspectives,” ACS Energy Letters 9, no. 7 (2024): 3292-3307, https://doi.org/10.1021/acsenergylett.4c00628.

[53]

W. Chen, Y. Wang, F. Wang, et al., “Zinc Chemistries of Hybrid Electrolytes in Zinc Metal Batteries: From Solvent Structure to Interfaces,” Advanced Materials 36, no. 47 (2024): 2411802, https://doi.org/10.1002/adma.202411802.

[54]

X. Liu, H. Wang, J. Zhong, et al., “Cathode Material Design of Static Aqueous Zn I2 Batteries,” Journal of Energy Storage 84 (2024): 110765, https://doi.org/10.1016/j.est.2024.110765.

[55]

M. Cui, Y. Xiao, L. Kang, et al., “Quasi-Isolated Au Particles as Heterogeneous Seeds to Guide Uniform Zn Deposition for Aqueous Zinc-Ion Batteries,” ACS Applied Energy Materials 2, no. 9 (2019): 6490-6496, https://doi.org/10.1021/acsaem.9b01063.

[56]

X. B. Cheng, R. Zhang, C. Z. Zhao, and Q. Zhang, “Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review,” Chemical Reviews 117, no. 15 (2017): 10403-10473, https://doi.org/10.1021/acs.chemrev.7b00115.

[57]

W. Shang, Q. Li, F. Jiang, et al., “Boosting Zn||I2 Battery's Performance by Coating a Zeolite-Based Cation-Exchange Protecting Layer,” Nano-Micro Letters 14, no. 1 (2022): 82, https://doi.org/10.1007/s40820-022-00825-5.

[58]

X. Q. Zhang, X. Chen, X. B. Cheng, et al., “Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes,” Angewandte Chemie International Edition 57, no. 19 (2018): 5301-5305, https://doi.org/10.1002/anie.201801513.

[59]

W. Li, K. Wang, S. Cheng, and K. Jiang, “A Long-Life Aqueous Zn-Ion Battery Based on Na3V2(PO4)2F3 Cathode,” Energy Storage Materials 15 (2018): 14-21, https://doi.org/10.1016/j.ensm.2018.03.003.

[60]

C. Guo, J. Zhou, Y. Chen, et al., “Synergistic Manipulation of Hydrogen Evolution and Zinc Ion Flux in Metal-Covalent Organic Frameworks for Dendrite-Free Zn-Based Aqueous Batteries,” Angewandte Chemie International Edition 61, no. 41 (2022): e202210871, https://doi.org/10.1002/anie.202210871.

[61]

N. Hu, J. Tao, Y. Tan, et al., “Comprehensive Understanding of Steric-Hindrance Effect on the Trade-Off Between Zinc Ions Transfer and Reduction Kinetics to Enable Highly Reversible and Stable Zn Anodes,” Advanced Energy Materials 14, no. 46 (2024): 2404018, https://doi.org/10.1002/aenm.202404018.

[62]

P. Sun, L. Ma, W. Zhou, et al., “Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendrite-Free Zn Ion Batteries Achieved by a Low-Cost Glucose Additive,” Angewandte Chemie International Edition 60, no. 33 (2021): 18247-18255, https://doi.org/10.1002/anie.202105756.

[63]

M. Zhou, S. Guo, J. Li, et al., “Surface-Preferred Crystal Plane for a Stable and Reversible Zinc Anode,” Advanced Materials 33, no. 21 (2021): 2100187, https://doi.org/10.1002/adma.202100187.

[64]

F. Yang, J. A. Yuwono, J. Hao, et al., “Understanding H2 Evolution Electrochemistry to Minimize Solvated Water Impact on Zinc-Anode Performance,” Advanced Materials 34, no. 45 (2022): 2206754, https://doi.org/10.1002/adma.202206754.

[65]

F. Liu, Y. Zhang, H. Liu, et al., “Advances of Nanomaterials for High-Efficiency Zn Metal Anodes in Aqueous Zinc-Ion Batteries,” ACS Nano 18, no. 25 (2024): 16063-16090, https://doi.org/10.1021/acsnano.4c06008.

[66]

L. Wang, W. Huang, W. Guo, et al., “Sn Alloying to Inhibit Hydrogen Evolution of Zn Metal Anode in Rechargeable Aqueous Batteries,” Advanced Functional Materials 32, no. 1 (2022): 2108533, https://doi.org/10.1002/adfm.202108533.

[67]

W. Hu, J. Ju, N. Deng, et al., “Recent Progress in Tackling Zn Anode Challenges for Zn Ion Batteries,” Journal of Materials Chemistry A 9, no. 46 (2021): 25750-25772, https://doi.org/10.1039/D1TA08184E.

[68]

Z. Cai, Y. Ou, J. Wang, et al., “Chemically Resistant Cu-Zn/Zn Composite Anode for Long Cycling Aqueous Batteries,” Energy Storage Materials 27 (2020): 205-211, https://doi.org/10.1016/j.ensm.2020.01.032.

[69]

J. Zhao, J. Zhang, W. Yang, et al., “ ‘Water-in-Deep Eutectic Solvent’ Electrolytes Enable Zinc Metal Anodes for Rechargeable Aqueous Batteries,” Nano Energy 57 (2019): 625-634, https://doi.org/10.1016/j.nanoen.2018.12.086.

[70]

J. Hao, L. Yuan, B. Johannessen, et al., “Studying the Conversion Mechanism to Broaden Cathode Options in Aqueous Zinc-Ion Batteries,” Angewandte Chemie International Edition 60, no. 47 (2021): 25114-25121, https://doi.org/10.1002/anie.202111398.

[71]

Y. Chen, Z. X. Zhang, P. W. Cai, et al., “Polyoxotungstate Featuring Zinc-Ion-Triggered Structural Transformation as an Efficient Electrolyte Additive for Aqueous Zinc-Ion Batteries,” Angewandte Chemie International Edition 64 (2025): e202420284, https://doi.org/10.1002/anie.202420284.

[72]

Z. Zhang, B. Xi, X. Ma, W. Chen, J. Feng, and S. Xiong, “Recent Progress, Mechanisms, and Perspectives for Crystal and Interface Chemistry Applying to the Zn Metal Anodes in Aqueous Zinc-Ion Batteries,” SusMat 2, no. 2 (2022): 114-141, https://doi.org/10.1002/sus2.53.

[73]

M. Wang, J. Ma, Y. Meng, et al., “In Situ Formation of Solid Electrolyte Interphase Facilitates Anode-free Aqueous Zinc Battery,” eScience (2025): 100397, https://doi.org/10.1016/j.esci.2025.100397.

[74]

L. Wang, H. Yu, D. Chen, et al., “Steric Hindrance and Orientation Polarization by a Zwitterionic Additive to Stabilize Zinc Metal Anodes,” Carbon Neutralization 3, no. 6 (2024): 996-1008, https://doi.org/10.1002/cnl2.168.

[75]

X. Guo, H. Xu, Y. Tang, et al., “Confining Iodine Into Metal-Organic Framework Derived Metal-Nitrogen-Carbon for Long-Life Aqueous Zinc-Iodine Batteries,” Advanced Materials 36, no. 38 (2024): 2408317, https://doi.org/10.1002/adma.202408317.

[76]

P. Jiang, T. Liu, C. Lei, et al., “Energetic Hypervalent Organoiodine Electrochemistry for Aqueous Zinc Batteries,” Journal of the American Chemical Society 146, no. 36 (2024): 25108-25117, https://doi.org/10.1021/jacs.4c08145.

[77]

H. Chen, X. Li, K. Fang, H. Wang, J. Ning, and Y. Hu, “Aqueous Zinc-Iodine Batteries: From Electrochemistry to Energy Storage Mechanism,” Advanced Energy Materials 13, no. 41 (2023): 2302187, https://doi.org/10.1002/aenm.202302187.

[78]

X. Zhu, Z. Xu, T. Zhang, et al., “Ultra-Stable Zinc Anodes Facilitated by Hydrophilic Polypropylene Separators With Large Scale Production Capacity,” Advanced Functional Materials 34 (2024): 2407262, https://doi.org/10.1002/adfm.202407262.

[79]

Z. Liu, R. Wang, Q. Ma, et al., “A Dual-Functional Organic Electrolyte Additive With Regulating Suitable Overpotential for Building Highly Reversible Aqueous Zinc Ion Batteries,” Advanced Functional Materials 34, no. 5 (2024): 2214538, https://doi.org/10.1002/adfm.202214538.

[80]

J. Zhao, J. Zhang, W. Yang, et al., “ ‘Water-in-Deep Eutectic Solvent’ Electrolytes Enable Zinc Metal Anodes for Rechargeable Aqueous Batteries,” Nano Energy 57 (2019): 625-634, https://doi.org/10.1016/j.nanoen.2018.12.086.

[81]

K. K. Sonigara, J. Zhao, H. K. Machhi, G. Cui, and S. S. Soni, “Self-Assembled Solid-State Gel Catholyte Combating Iodide Diffusion and Self-Discharge for a Stable Flexible Aqueous Zn-I2 Battery,” Advanced Energy Materials 10, no. 47 (2020): 2001997, https://doi.org/10.1002/aenm.202001997.

[82]

F. Wang, J. Tseng, Z. Liu, et al., “A Stimulus-Responsive Zinc-Iodine Battery With Smart Overcharge Self-Protection Function,” Advanced Materials 32, no. 16 (2020): 2000287, https://doi.org/10.1002/adma.202000287.

[83]

X. Li, M. Li, Z. Huang, et al., “Activating the I0/I+ Redox Couple in an Aqueous I2-Zn Battery to Achieve a High Voltage Plateau,” Energy & Environmental Science 14, no. 1 (2021): 407-413, https://doi.org/10.1039/D0EE03086D.

[84]

M. Yan, C. Xu, Y. Sun, H. Pan, and H. Li, “Manipulating Zn Anode Reactions Through Salt Anion Involving Hydrogen Bonding Network in Aqueous Electrolytes With Peo Additive,” Nano Energy 82 (2021): 105739, https://doi.org/10.1016/j.nanoen.2020.105739.

[85]

X. Jin, L. Song, C. Dai, et al., “A Flexible Aqueous Zinc-Iodine Microbattery With Unprecedented Energy Density,” Advanced Materials 34, no. 15 (2022): 2109450, https://doi.org/10.1002/adma.202109450.

[86]

J. Chen, G. Ou, P. Liu, et al., “Pyrrolic-Nitrogen Chemistry in 1-(2-hydroxyethyl)imidazole Electrolyte Additives Toward a 50,000-cycle-life Aqueous Zinc-Iodine Battery,” Angewandte Chemie International Edition 64, no. 2 (2025): e202414166, https://doi.org/10.1002/anie.202414166.

[87]

B. Hao, J. Zhou, H. Yang, et al., “Concentration Polarization Induced Phase Rigidification in Ultralow Salt Colloid Chemistry to Stabilize Cryogenic Zn Batteries,” Nature Communications 15, no. 1 (2024): 9465, https://doi.org/10.1038/s41467-024-53885-z.

[88]

C. Li, H. Li, X. Ren, et al., “Urea Chelation of I+ for High-Voltage Aqueous Zinc-Iodine Batteries,” ACS Nano 19, no. 2 (2025): 2633-2640, https://doi.org/10.1021/acsnano.4c14451.

[89]

Y. Li, S. Yang, H. Du, et al., “A Stable Fluoride-Based Interphase for a Long Cycle Zn Metal Anode in an Aqueous Zinc Ion Battery,” Journal of Materials Chemistry A 10, no. 27 (2022): 14399-14410, https://doi.org/10.1039/D2TA03550B.

[90]

K. Zhang, C. Wu, S. Yan, et al., “Inherent Water Competition Effect-Enabled Colloidal Electrode for Ultra-Stable Aqueous Zn-I Batteries,” Journal of the American Chemical Society 146 (2024): 29513-29522, https://doi.org/10.1021/jacs.4c09352.

[91]

H. Wang, W. Ye, B. Yin, et al., “Modulating Cation Migration and Deposition With Xylitol Additive and Oriented Reconstruction of Hydrogen Bonds for Stable Zinc Anodes,” Angewandte Chemie International Edition 62, no. 10 (2023): e202218872, https://doi.org/10.1002/anie.202218872.

[92]

J. Wu, J. L. Yang, B. Zhang, and H. J. Fan, “Immobilizing Polyiodides With Expanded Zn2+ Channels for High-Rate Practical Zinc-Iodine Battery,” Advanced Energy Materials 14, no. 3 (2023): 2302738, https://doi.org/10.1002/aenm.202302738.

[93]

H. Hong, Y. Wang, Y. Zhang, et al., “Hydrogen-Bonded Ionic Co-Crystals for Fast Solid-State Zinc Ion Storage,” Advanced Materials 36(2024): 2407150, https://doi.org/10.1002/adma.202407150.

[94]

Q. Zhang, Y. Ma, Y. Lu, et al., “Modulating Electrolyte Structure for Ultralow Temperature Aqueous Zinc Batteries,” Nature Communications 11, no. 1 (2020): 4463, https://doi.org/10.1038/s41467-020-18284-0.

[95]

W. Xu, J. Li, X. Liao, et al., “Fluoride-Rich, Organic-Inorganic Gradient Interphase Enabled by Sacrificial Solvation Shells for Reversible Zinc Metal Batteries,” Journal of the American Chemical Society 145, no. 41 (2023): 22456-22465, https://doi.org/10.1021/jacs.3c06523.

[96]

M. Wang, Y. Meng, M. Sajid, et al., “Bidentate Coordination Structure Facilitates High-Voltage and High-Utilization Aqueous Zn−I2 Batteries,” Angewandte Chemie International Edition 63 (2024): e202404784, https://doi.org/10.1002/anie.202404784.

[97]

Z. Fan, J. Wang, Y. Wu, X. Yan, D. Dai, and X. L. Wu, “Research Progresses on Cathode Materials of Aqueous Zinc-Ion Batteries,” Journal of Energy Chemistry 97 (2024): 237-264, https://doi.org/10.1016/j.jechem.2024.05.033.

[98]

Y. Yang, S. Liang, B. Lu, and J. Zhou, “Eutectic Electrolyte Based on N-Methylacetamide for Highly Reversible Zinc-Iodine Battery,” Energy & Environmental Science 15, no. 3 (2022): 1192-1200, https://doi.org/10.1039/D1EE03268B.

[99]

X. Li, S. Wang, T. Wang, et al., “Bis-Ammonium Salts With Strong Chemisorption to Halide Ions for Fast and Durable Aqueous Redox Zn Ion Batteries,” Nano Energy 98 (2022): 107278, https://doi.org/10.1016/j.nanoen.2022.107278.

[100]

S. J. Zhang, J. Hao, H. Li, et al., “Polyiodide Confinement by Starch Enables Shuttle-Free Zn-Iodine Batteries,” Advanced Materials 34, no. 23 (2022): 2201716, https://doi.org/10.1002/adma.202201716.

[101]

T. Liu, H. Wang, C. Lei, et al., “Recognition of the Catalytic Activities of Graphitic N for Zinc-Iodine Batteries,” Energy Storage Materials 53 (2022): 544-551, https://doi.org/10.1016/j.ensm.2022.09.028.

[102]

T. Xiao, J. L. Yang, B. Zhang, et al., “All-Round Ionic Liquids for Shuttle-Free Zinc-Iodine Battery,” Angewandte Chemie International Edition 63, no. 8 (2024): e202318470, https://doi.org/10.1002/anie.202318470.

[103]

Z. Wen, W. Fang, X. Wu, et al., “High-Concentration Additive and Triiodide/Iodide Redox Couple Stabilize Lithium Metal Anode and Rejuvenate the Inactive Lithium in Carbonate-Based Electrolyte,” Advanced Functional Materials 32, no. 35 (2022): 2204768, https://doi.org/10.1002/adfm.202204768.

[104]

W. Yan, Y. Liu, J. Qiu, et al., “A Tripartite Synergistic Optimization Strategy for Zinc-Iodine Batteries,” Nature Communications 15, no. 1 (2024): 9702, https://doi.org/10.1038/s41467-024-53800-6.

[105]

J. L. Yang, T. Xiao, T. Xiao, et al., “Cation-Conduction Dominated Hydrogels for Durable Zinc-Iodine Batteries,” Advanced Materials 36, no. 21 (2024): 2313610, https://doi.org/10.1002/adma.202313610.

[106]

N. Wang, Y. Ma, Y. Chang, et al., “Armoring the Cathode With Starch Gel Enables Shuttle-Free Zinc-Iodine Batteries,” Journal of Colloid and Interface Science 665 (2024): 491-499, https://doi.org/10.1016/j.jcis.2024.03.149.

[107]

S. J. Zhang, J. Hao, H. Wu, Q. Chen, C. Ye, and S. Z. Qiao, “Protein Interfacial Gelation Toward Shuttle-Free and Dendrite-Free Zn-Iodine Batteries,” Advanced Materials 36, no. 35 (2024): 202404011, https://doi.org/10.1002/adma.202404011.

[108]

J. Xu, Z. Huang, H. Zhou, G. He, Y. Zhao, and H. Li, “Holistic Optimization Strategies for Advanced Aqueous Zinc Iodine Batteries,” Energy Storage Materials 72 (2024): 103596, https://doi.org/10.1016/j.ensm.2024.103596.

[109]

M. Han, D. Chen, Q. Lu, and G. Fang, “Aqueous Rechargeable Zn-Iodine Batteries: Issues, Strategies and Perspectives,” Small 20, no. 18 (2024): 2310293, https://doi.org/10.1002/smll.202310293.

[110]

T. Y. Yang, T. T. Su, H. L. Wang, K. Li, W. F. Ren, and R. C. Sun, “ ‘Tennis Racket’ Hydrogel Electrolytes to Synchronously Regulate Cathode and Anode of Zinc-Iodine Batteries,” Journal of Energy Chemistry 102 (2025): 454-462, https://doi.org/10.1016/j.jechem.2024.11.004.

[111]

J. L. Yang, H. H. Liu, X. X. Zhao, et al., “Janus Binder Chemistry for Synchronous Enhancement of Iodine Species Adsorption and Redox Kinetics Toward Sustainable Aqueous Zn-I2 Batteries,” Journal of the American Chemical Society 146, no. 10 (2024): 6628-6637, https://doi.org/10.1021/jacs.3c12638.

[112]

S. Lv, T. Fang, Z. Ding, et al., “A High-Performance Quasi-Solid-State Aqueous Zinc-Dual Halogen Battery,” ACS Nano 16 (2022): 20389-20399, https://doi.org/10.1021/acsnano.2c06362.

[113]

Y. Tan, R. Liao, Y. Mu, et al., “Hierarchically-Structured and Mechanically-Robust Hydrogel Electrolytes for Flexible Zinc-Iodine Batteries,” Advanced Functional Materials 34, no. 45 (2024): 2470265, https://doi.org/10.1002/adfm.202470265.

[114]

Q. Liu, Z. Yu, Q. Zhuang, J. K. Kim, F. Kang, and B. Zhang, “Anti-Fatigue Hydrogel Electrolyte for All-Flexible Zn-Ion Batteries,” Advanced Materials 35, no. 36 (2023): 2300498, https://doi.org/10.1002/adma.202300498.

[115]

F. Li, C. Zhou, J. Zhang, et al., “Mullite Mineral-Derived Robust Solid Electrolyte Enables Polyiodide Shuttle-Free Zinc-Iodine Batteries,” Advanced Materials 36, no. 38 (2024): 2408213, https://doi.org/10.1002/adma.202408213.

[116]

Z. Yan, Q. H. Yang, and C. Yang, “Elemental Halogen Cathodes for Aqueous Zinc Batteries: Mechanisms, Challenges and Strategies,” Journal of Materials Chemistry A 12, no. 37 (2024): 24746-24760, https://doi.org/10.1039/D4TA0510D.

RIGHTS & PERMISSIONS

2025 The Author(s). Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

61

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/