Enhanced Structural Transformation Enabled by Low-Crystalline Vanadium Oxides in Aqueous Zinc-Ion Batteries

Hyeonjun Lee , Hyungjin Lee , Sangki Lee , Hyojun Lim , Seung-Tae Hong , Hyung Do Kim , Munseok S. Chae

Battery Energy ›› 2025, Vol. 4 ›› Issue (6) : e70040

PDF
Battery Energy ›› 2025, Vol. 4 ›› Issue (6) : e70040 DOI: 10.1002/bte2.20250016
RESEARCH ARTICLE

Enhanced Structural Transformation Enabled by Low-Crystalline Vanadium Oxides in Aqueous Zinc-Ion Batteries

Author information +
History +
PDF

Abstract

Aqueous batteries are gaining attention owing to their high safety and cost-effectiveness. Among these, Zn-based aqueous batteries excel because of Zn's low redox potential (−0.76 V vs. SHE), its abundance, and eco-friendliness. However, despite their advantages, challenges, such as low energy density and limited cycle life limit their usage. This study addresses these issues by employing low-crystalline V2O4.86 as a cathode material, enhanced with oxygen vacancies created by controlled annealing time. The structure of low-crystalline V2O4.86 facilitates rapid structural transformation into the highly active phase Zn3+x(OH)2V2O7·2(H2O). Electrochemical tests revealed a 22% capacity improvement for low-crystalline V2O4.86 (360 mAh g−1) over high-crystalline V2O5 (295 mAh g−1) at 0.8 A g−1, attributed to the presence of active oxygen vacancies. Comprehensive structural analysis, spectroscopy, and diffusion path/barrier studies elucidate the underlying mechanisms for the first time, highlighting the potential of oxygen-engineered V2O5. These findings indicate that electrodes engineered with oxygen vacancies offer promising insights in advancing cathode materials for high-performance secondary battery technologies.

Keywords

aqueous electrolytes materials / cathode materials / low crystalline / V2O5 / zinc-ion batteries

Cite this article

Download citation ▾
Hyeonjun Lee, Hyungjin Lee, Sangki Lee, Hyojun Lim, Seung-Tae Hong, Hyung Do Kim, Munseok S. Chae. Enhanced Structural Transformation Enabled by Low-Crystalline Vanadium Oxides in Aqueous Zinc-Ion Batteries. Battery Energy, 2025, 4(6): e70040 DOI:10.1002/bte2.20250016

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Armand and J. M. Tarascon, “Building Better Batteries,” Nature 451 (2008): 652-657.

[2]

S. K. Das, S. Mahapatra, and H. Lahan, “Aluminium-Ion Batteries: Developments and Challenges,” Journal of Materials Chemistry A 5 (2017): 6347-6367.

[3]

M. E. Arroyo-de Dompablo, A. Ponrouch, P. Johansson, and M. R. Palacín, “Achievements, Challenges, and Prospects of Calcium Batteries,” Chemical Reviews 120 (2019): 6331-6357.

[4]

M. S. Chae, D. Setiawan, H. J. Kim, and S. T. Hong, “Layered Iron Vanadate as a High-Capacity Cathode Material for Nonaqueous Calcium-Ion Batteries,” Batteries 7, no. 3 (2021): 54.

[5]

D. Setiawan, H. Lee, H. Bu, D. Aurbach, S. T. Hong, and M. S. Chae, “Magnesium Ions Storage in Molybdenum Oxide Structures Examined as a Promising Cathode Material for Rechargeable Magnesium Batteries,” Small Structures 5, no. 1 (2024): 2300228.

[6]

D. Aurbach, Z. Lu, A. Schechter, et al., “Prototype Systems for Rechargeable Magnesium Batteries,” Nature 407, no. 6805 (2000): 724-727.

[7]

C. Xu, B. Li, H. Du, and F. Kang, “Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery,” Angewandte Chemie International Edition 51, no. 4 (2012): 933-935.

[8]

G. Bergman, N. Bruchiel-Spanier, O. Bluman, et al., “To What Extent Do Anions Affect the Electrodeposition of Zn?,” Journal of Materials Chemistry A 12, no. 24 (2024): 14456-14466.

[9]

D. Setiawan, H. Lee, H. H. Kwak, S. T. Hong, and M. S. Chae, “Bi-Layered Calcium Vanadium Oxide as a Cathode Material for Wet Organic Electrolyte-Based Rechargeable Zn-Ion Batteries,” Journal of Energy Storage 72 (2023): 108497.

[10]

H. Lee, A. Nimkar, H. Lee, et al., “New Mn Electrochemistry for Rechargeable Aqueous Batteries: Promising Directions Based on Preliminary Results,” Energy & Environmental Materials 8 (2024): e12823.

[11]

H. Lee, A. Nimkar, N. Shpigel, et al., “π-Electron-Assisted Charge Storage in Fused-Ring Aromatic Carbonyl Electrodes for Aqueous Manganese-Ion Batteries,” ACS Energy Letters 9, no. 11 (2024): 5627-5634.

[12]

H. Lee, H. Lee, J. Pyun, S. T. Hong, and M. S. Chae, “Monoclinic Silver Vanadate (Ag0.33V2O5) as a High-Capacity Stable Cathode Material for Aqueous Manganese Batteries,” Advanced Science 11, no. 39 (2024): 2406642.

[13]

Y. Shi, Y. Chen, L. Shi, et al., “An Overview and Future Perspectives of Rechargeable Zinc Batteries,” Small 16, no. 23 (2020): 2000730.

[14]

K. W. Nam, H. Kim, J. H. Choi, and J. W. Choi, “Crystal Water for High Performance Layered Manganese Oxide Cathodes in Aqueous Rechargeable Zinc Batteries,” Energy & Environmental Science 12, no. 6 (2019): 1999-2009.

[15]

B. Sambandam, V. Mathew, S. Kim, et al., “An Analysis of the Electrochemical Mechanism of Manganese Oxides in Aqueous Zinc Batteries,” Chem 8, no. 4 (2022): 924-946.

[16]

L. Wu, Z. Li, Y. Xiang, et al., “Unraveling the Charge Storage Mechanism of β-MnO2 in Aqueous Zinc Electrolytes,” ACS Energy Letters 9 (2024): 5801-5809.

[17]

X. Li, Z. Chen, Y. Yang, S. Liang, B. Lu, and J. Zhou, “The Phosphate Cathodes for Aqueous Zinc-Ion Batteries,” Inorganic Chemistry Frontiers 9, no. 16 (2022): 3986-3998.

[18]

D. Bin, Y. Du, B. Yang, et al., “Progress of Phosphate-Based Polyanion Cathodes for Aqueous Rechargeable Zinc Batteries,” Advanced Functional Materials 33, no. 8 (2023): 2211765.

[19]

K. Zhu and W. Yang, “Vanadium-Based Cathodes for Aqueous Zinc-Ion Batteries: Mechanisms, Challenges, and Strategies,” Accounts of Chemical Research 57, no. 19 (2024): 2887-2900.

[20]

F. Wan and Z. Niu, “Design Strategies for Vanadium-Based Aqueous Zinc-Ion Batteries,” Angewandte Chemie 131, no. 46 (2019): 16508-16517.

[21]

H. Pan, Y. Shao, P. Yan, et al., “Reversible Aqueous Zinc/Manganese Oxide Energy Storage From Conversion Reactions,” Nature Energy 1 (2016): 16039.

[22]

M. Chen, S. C. Zhang, Z. G. Zou, et al., “Review of Vanadium-Based Oxide Cathodes as Aqueous Zinc-Ion Batteries,” Rare Metals 42 (2023): 2868-2905.

[23]

W. Zhang, C. Zuo, C. Tang, et al., “The Current Developments and Perspectives of V2O5 as Cathode for Rechargeable Aqueous Zinc-Ion Batteries,” Energy Technology 9, no. 2 (2021): 2000789.

[24]

X. Niu, N. Li, Y. Chen, et al., “Structure Evolution of V2O5 as Electrode Materials for Metal-Ion Batteries,” Batteries & Supercaps 6, no. 9 (2023): e202300238.

[25]

K. Zhu, T. Wu, and K. Huang, “Understanding the Dissolution and Phase Transformation Mechanisms in Aqueous Zn/α-V2O5 Batteries,” Chemistry of Materials 33, no. 11 (2021): 4089-4098.

[26]

X. Chen, L. Wang, H. Li, F. Cheng, and J. Chen, “Porous V2O5 Nanofibers as Cathode Materials for Rechargeable Aqueous Zinc-Ion Batteries,” Journal of Energy Chemistry 38 (2019): 20-25.

[27]

S. Lee, W. Jin, S. H. Kim, et al., “Oxygen Vacancy Diffusion and Condensation in Lithium-Ion Battery Cathode Materials,” Angewandte Chemie International Edition 58, no. 31 (2019): 10478-10485.

[28]

S. C. Lim, J. Lee, H. H. Kwak, et al., “Unraveling the Magnesium-Ion Intercalation Mechanism in Vanadium Pentoxide in a Wet Organic Electrolyte by Structural Determination,” Inorganic Chemistry 56, no. 14 (2017): 7668-7678.

[29]

H. Chen, L. L. Wong, and S. Adams, “SoftBV—A Software Tool for Screening the Materials Genome of Inorganic Fast Ion Conductors,” Acta Crystallographica. Section B, Structural Science, Crystal Engineering and Materials 75 (2019): 18-33.

[30]

H. Chen and S. Adams, “Bond Softness Sensitive Bond-Valence Parameters for Crystal Structure Plausibility Tests,” IUCrJ 4 (2017): 614-625.

[31]

J. Mendialdua, R. Casanova, and Y. Barbaux, “XPS Studies of V2O5, V6O13, VO2 and V2O3,” Journal of Electron Spectroscopy and Related Phenomena 71, no. 3 (1995): 249-261.

RIGHTS & PERMISSIONS

2025 The Author(s). Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

65

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/