Single-Ion Conductive Bacterial Cellulose Membrane Towards High Performance Lithium-Oxygen Batteries

Aqiang Wu , Mingxing Wang , Yaming Pang , Xinyu Li , Xiangqun Zhuge , Zhihong Luo , Guogang Ren , Kun Luo , Yurong Ren , Dan Liu , Weiwei Lei , Jianwei Lu

Battery Energy ›› 2025, Vol. 4 ›› Issue (6) : e70027

PDF
Battery Energy ›› 2025, Vol. 4 ›› Issue (6) : e70027 DOI: 10.1002/bte2.20250001
RESEARCH ARTICLE

Single-Ion Conductive Bacterial Cellulose Membrane Towards High Performance Lithium-Oxygen Batteries

Author information +
History +
PDF

Abstract

Bacterial cellulose (BC) as a natural polymer possessing ultrafine nanofibrous network and high crystallinity, leading to its remarkable tensile strength, moisture retention and natural degradability. In this study, we revealed that this BC membrane has excellent affinity to organic electrolyte, high ionic conductivity and inherent ion selectivity as well. Due to its ability of migrating lithium ions and suppressing the shuttling of anions across the membranes, it is deemed as available model for iodide-assisted lithium-oxygen batteries (LOBs). The cycle life of the LOBs significantly extends from 74 rounds to 341 rounds at 1.0 A g−1 with a fixed capacity of 1000 mAh g−1, when replacing glass fiber (GF) by BC membrane. More importantly, the rate performance improves significantly from 42 to 36 cycles to 215 and 116 cycles after equipping with the BC membrane at 3.0 and 5.0 A g−1. Surprisingly, the full discharge capacity dramatically enhanced by ca. eight times from 4,163 mAh g−1 (GF) to 32,310 mAh g−1 (BC). Benefited from the convenient biosynthesis, cost-effectiveness and high chemical-thermal stability, these qualities of the BC membrane accelerate the development and make it more viable for application in advancing next-generation environmentally friendly LOBs technology with high energy density.

Keywords

bacterial cellulose membranes / lithium-oxygen batteries / separators / single ion conductivity

Cite this article

Download citation ▾
Aqiang Wu, Mingxing Wang, Yaming Pang, Xinyu Li, Xiangqun Zhuge, Zhihong Luo, Guogang Ren, Kun Luo, Yurong Ren, Dan Liu, Weiwei Lei, Jianwei Lu. Single-Ion Conductive Bacterial Cellulose Membrane Towards High Performance Lithium-Oxygen Batteries. Battery Energy, 2025, 4(6): e70027 DOI:10.1002/bte2.20250001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

a) H. Yu, D. Liu, X. Feng, and Y. Zhang, “Recent Progresses, Challenges and Perspectives on Rechargeable Li-O2 Batteries,” Nano Select 1 (2020): 79-93 b) H.-S. Woo, Y.-B. Moon, S. Seo, H.-T. Lee, and D.-W. Kim, “Semi-Interpenetrating Polymer Network Composite Gel Electrolytes Employing Vinyl-Functionalized Silica for Lithium–Oxygen Batteries With Enhanced Cycling Stability,” ACS Applied Materials & Interfaces 10 (2017): 687–695 c) J. Yi, S. Guo, P. He, and H. Zhou, “Status and Prospects of Polymer Electrolytes for Solid-State Li–O2 (air) Batteries,” Energy & Environmental Science 10 (2017): 860–884 d) D. Yuan, C. Ji, X. Zhuge, et al., “Organic-Inorganic Interlayer Enabling the Stability of PVDF-HFP Modified Li Metal for Lithium-Oxygen Batteries,” Applied Surface Science 613 (2023): 155863.

[2]

a) Z. Luo, G. Zhu, L. Yin, et al., “A Facile Surface Preservation Strategy for the Lithium Anode for High-Performance Li-O2Batteries,” ACS Applied Materials & Interfaces 12 (2020): 27316-27326 b) Y. Wang and Y.-C. Lu, “Nonaqueous Lithium–Oxygen Batteries: Reaction Mechanism and Critical Open Questions,” Energy Storage Materials 28 (2020): 235–246 c) P. Tan, H. R. Jiang, X. B. Zhu, et al., “Advances and Challenges in Lithium-Air Batteries,” Applied Energy 204 (2017): 780–806 d) Y. Fan, Z. Yang, W. Hua, et al., “Functionalized Boron Nitride Nanosheets/Graphene Interlayer for Fast and Long-Life Lithium–Sulfur Batteries,” Advanced Energy Materials 7 (2017): 1602380 e) C. Chen, J. Wang, D. Liu, et al., “Functionalized Boron Nitride Membranes With Ultrafast Solvent Transport Performance for Molecular Separation,” Nature Communications 9 (2018): 1902.

[3]

Y. Dou, Z. Xie, Y. Wei, Z. Peng, and Z. Zhou, “Redox Mediators for High-Performance Lithium-Oxygen Batteries,” National Science Review 9 (2022): nwac040.

[4]

a) K. Wu, J. Wang, D. Liu, et al., “Highly Thermoconductive, Thermostable, and Super-Flexible Film by Engineering 1D Rigid Rod-Like Aramid Nanofiber/2D Boron Nitride Nanosheets,” Advanced Materials 32 (2020): e1906939 b) Y. Qian, J. Shang, D. Liu, et al., “Enhanced Ion Sieving of Graphene Oxide Membranes via Surface Amine Functionalization,” Journal of the American Chemical Society 143 (2021): 5080–5090 c) T. Liu, J. Lu, Z. Chen, et al., “Advances, Mechanisms and Applications in Oxygen Evolution Electrocatalysis of Gold-Driven,” Chemical Engineering Journal 496 (2024): 153719.

[5]

H. D. Lim, H. Song, J. Kim, et al., “Superior Rechargeability and Efficiency of Lithium-Oxygen Batteries: Hierarchical Air Electrode Architecture Combined With a Soluble Catalyst,” Angewandte Chemie International Edition 53 (2014): 3926-3931.

[6]

Y. Chen, S. A. Freunberger, Z. Peng, O. Fontaine, and P. G. Bruce, “Charging a Li-O2 Battery Using a Redox Mediator,” Nature Chemistry 5 (2013): 489-494.

[7]

X. Gao, Y. Chen, L. Johnson, and P. G. Bruce, “Promoting Solution Phase Discharge in Li-O2 Batteries Containing Weakly Solvating Electrolyte Solutions,” Nature Materials 15 (2016): 882-888.

[8]

a) B. J. Bergner, A. Schürmann, K. Peppler, A. Garsuch, and J. Janek, “Tempo: A Mobile Catalyst for Rechargeable Li-O2 Batteries,” Journal of the American Chemical Society 136 (2014): 15054-15064 b) D. Sun, Y. Shen, W. Zhang, et al., “A Solution-Phase Bifunctional Catalyst for Lithium–Oxygen Batteries,” Journal of the American Chemical Society 136 (2014): 8941–8946.

[9]

X. Wu, H. Wu, S. Guan, et al., “A Molecular Sieve-Containing Protective Separator to Suppress the Shuttle Effect of Redox Mediators in Lithium-Oxygen Batteries,” Nano Research 16 (2023): 9453-9460.

[10]

W.-J. Kwak, I. Rosy, D. Sharon, et al., “Lithium-Oxygen Batteries and Related Systems: Potential, Status, and Future,” Chemical Reviews 120 (2020): 6626-6683.

[11]

N. Feng, P. He, and H. Zhou, “Enabling Catalytic Oxidation of Li2O2 at the Liquid-Solid Interface: The Evolution of an Aprotic Li-O2 Battery,” Chemsuschem 8 (2015): 600-602.

[12]

S. H. Lee, J. B. Park, H. S. Lim, and Y. K. Sun, “An Advanced Separator for Li-O2 Batteries: Maximizing the Effect of Redox Mediators,” Advanced Energy Materials 7 (2017): 1602417.

[13]

a) S. M. Ahn, D. Y. Kim, J. Suk, Y. Kang, H. K. Kim, and D. W. Kim, “Mechanism for Preserving Volatile Nitrogen Dioxide and Sustainable Redox Mediation in the Nonaqueous Lithium-Oxygen Battery,” ACS Applied Materials & Interfaces 13 (2021): 8159-8168 b) W.-H. Ryu, F. S. Gittleson, J. M. Thomsen, et al., “Heme Biomolecule as Redox Mediator and Oxygen Shuttle for Efficient Charging of Lithium-Oxygen Batteries,” Nature Communications 7 (2016): 12925.

[14]

a) Y. Li, S. Dong, B. Chen, et al., “Li-O2 Cell With LiI(3-hydroxypropionitrile)2 as a Redox Mediator: Insight Into the Working Mechanism of I- During Charge in Anhydrous Systems,” Journal of Physical Chemistry Letters 8 (2017): 4218-4225 b) W.-J. Kwak, D. Hirshberg, D. Sharon, et al., “Understanding the Behavior of Li–Oxygen Cells Containing LiI,” Journal of Materials Chemistry A 3 (2015): 8855–8864 c) W. Zhang, Y. Shen, D. Sun, et al., “Promoting Li2O2 Oxidation via Solvent-Assisted Redox Shuttle Process for Low Overpotential Li-O2 Battery,” Nano Energy 30 (2016): 43–51 d) P. Zhang, B. Han, X. Yang, et al., “Revealing the Intrinsic Atomic Structure and Chemistry of Amorphous LiO2-Containing Products in Li–O2 Batteries Using Cryogenic Electron Microscopy,” Journal of the American Chemical Society 144 (2022): 2129 e) T. Liu, M. Leskes, W. Yu, et al., “Cycling Li-O2 batteries via LiOH Formation and Decomposition,” Science 350 (2015): 530–533.

[15]

a) Y. Zhao, Y. Ye, F. Wu, Y. Li, L. Li, and R. Chen, “Anode Interface Engineering and Architecture Design for High-Performance Lithium-Sulfur Batteries,” Advanced Materials 31 (2019): 1806532 b) L. Fan, M. Li, X. Li, W. Xiao, Z. Chen, and J. Lu, “Interlayer Material Selection for Lithium-Sulfur Batteries,” Joule 3 (2019): 361–386 c) T. Tao, S. Lu, Y. Fan, W. Lei, S. Huang, and Y. Chen, “Anode Improvement in Rechargeable Lithium-Sulfur Batteries,” Advanced Materials 29 (2017): 1700542 d) J. Zhang, S. Uzun, S. Seyedin, et al., “Additive-Free MXene Liquid Crystals and Fibers,” ACS Central Science 6 (2020): 254–265.

[16]

S. Wu, Y. Qiao, H. Deng, and H. Zhou, “A Single Ion Conducting Separator and Dual Mediator-Based Electrolyte for High-Performance Lithium-Oxygen Batteries With Non-Carbon Cathodes,” Journal of Materials Chemistry A 6 (2018): 9816-9822.

[17]

W. Chen, Z. Luo, X. Zhuge, et al., “Protecting Lithium Anode With Ionic Liquid Modified Poly(Vinylidene Fluoride) Single Ion Conducting Separators for Iodide-Assisted Lithium Oxygen Batteries,” Journal of Energy Storage 50 (2022): 104580.

[18]

Z.-F. Chen, X. Lin, H. Xia, et al., “A Functionalized Membrane for Lithium-Oxygen Batteries to Suppress the Shuttle Effect of Redox Mediators,” Journal of Materials Chemistry A 7 (2019): 14260-14270.

[19]

a) Y. Wang, D. Li, S. Zhang, Z. Kang, H. Xie, and J. Liu, “Poly (3,4-Ethylenedioxythiophene):poly (Styrenesulfonate)- Decorated Separator in Li-O2 Batteries: Suppressing the Shuttle Effect of Dual Redox Mediators by Coulombic Interactions,” Journal of Power Sources 466 (2020): 228336 b) Y. Qiao, Y. He, S. Wu, et al., “MOF-Based Separator in an Li–O2 Battery: An Effective Strategy to Restrain the Shuttling of Dual Redox Mediators,” ACS Energy Letters 3 (2018): 463–468 c) H. Zhang, C. Li, M. Piszcz, et al., “Single Lithium-Ion Conducting Solid Polymer Electrolytes: Advances and Perspectives,” Chemical Society Reviews 46 (2017): 797–815.

[20]

a) V. D. Girard, J. Chaussé, and P. Vermette. Journal of Applied Polymer Science 141 (2024): e55163 b) P. V. Krasteva, J. Bernal-Bayard, L. Travier, et al., “Insights Into the Structure and Assembly of a Bacterial Cellulose Secretion System,” Nature Communications 8 (2017): 2065 c) P. Song, J. Dai, G. Chen, et al., “Bioinspired Design of Strong, Tough, and Thermally Stable Polymeric Materials via nanoconfinement,” ACS Nano 12 (2018): 9266.

[21]

a) Z. Zhang, Y. Li, X. Cui, et al., “Understanding the Advantageous Features of Bacterial Cellulose-Based Separator in Li-S Battery,” Advanced Materials Interfaces 10 (2023): 2201730 b) C. Huang, H. Ji, Y. Yang, et al., “Tempo-Oxidized Bacterial Cellulose Nanofiber Membranes as High-Performance Separators for Lithium-Ion Batteries,” Carbohydrate Polymers 230 (2020): 115570 c) C. Cheng, R. Yang, Y. Wang, D. Fu, J. Sheng, and X. Guo, “A Bacterial Cellulose-Based Separator With Tunable Pore Size for Lithium-Ion Batteries,” Carbohydrate Polymers 304 (2023): 120489.

[22]

a) G. Zhang, D. Zhang, R. Yang, et al., “A Multifunctional Wood-Derived Separator Towards the Problems of Semi-Open System in Lithium-Oxygen Batteries,” Advanced Functional Materials 33 (2023): 2304981 b) R. Gonçalves, E. Lizundia, M. M. Silva, C. M. Costa, and S. Lanceros-Méndez, “Mesoporous Cellulose Nanocrystal Membranes as Battery Separators for Environmentally Safer Lithium-Ion Batteries,” ACS Applied Energy Materials 2 (2019): 3749–3761.

[23]

K. Luo, G. Zhu, Y. Zhao, et al., “Enhanced Cycling Stability of Li-O2 Batteries by Using a polyurethane/SiO2/Glass Fiber Nanocomposite Separator,” Journal of Materials Chemistry A 6 (2018): 7770-7776.

[24]

M. F. Rosa, E. S. Medeiros, J. A. Malmonge, et al., “Cellulose Nanowhiskers From Coconut Husk Fibers: Effect of Preparation Conditions on Their Thermal and Morphological Behavior,” Carbohydrate Polymers 81 (2010): 83-92.

[25]

N. Mittal, A. Ojanguren, N. Cavasin, E. Lizundia, and M. Niederberger, “Transient Rechargeable Battery With a High Lithium Transport Number Cellulosic Separator,” Advanced Functional Materials 31 (2021): 2101827.

[26]

H. Mu, K. Luo, Y. Pang, et al., “Mesoporous SiO2 Anode Armour for Lithium Oxygen Battery,” Chemical Engineering Journal 475 (2023): 146489.

RIGHTS & PERMISSIONS

2025 The Author(s). Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

68

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/