The Customization of Phosphorus Terminal for MXene Materials by Photothermal Effect Toward High-Performance Zn-Ion Hybrid Supercapacitors

Xiaochun Wei , Yongfang Liang , Hailong Shen , Hongying Zhao , Jinyu Wu , Haifu Huang , Xianqing Liang , Wenzheng Zhou , Shuaikai Xu , Huangzhong Yu

Battery Energy ›› 2025, Vol. 4 ›› Issue (5) : e70017

PDF
Battery Energy ›› 2025, Vol. 4 ›› Issue (5) : e70017 DOI: 10.1002/bte2.20240117
RESEARCH ARTICLE

The Customization of Phosphorus Terminal for MXene Materials by Photothermal Effect Toward High-Performance Zn-Ion Hybrid Supercapacitors

Author information +
History +
PDF

Abstract

MXene materials exhibit outstanding pseudocapacitive performance, holding great potential for application in zinc-ion hybrid supercapacitors (Zn-HSCs). Exploring the effect of the surface terminal regulation on the performance of MXene is crucial yet challenging. In this study, the phosphorus-terminal groups (P─C and P─O) with a P concentration of 2.71 at% are successfully tailored and interlayer spacing is enhanced during the ultraviolet light irradiation process of Ti3C2Tx MXene, which is the first report of photoinduced P-doped MXene modification. Density functional theory calculations show that P doping is more likely to be adsorbed by ─O groups than to replace Ti vacancy, and the stability of the MXene electrode can be improved by the introduction of a phosphorus terminal. The resulting P-doped Ti3C2Tx MXene shows a significant increased pseudocapacitance performance, achieving superior results compared with traditional resistance furnace heating methods. The specific capacitance achieves 500.5 F g−1, due to the ─P functional group and Ti atom double reoxidation sites. Furthermore, a Zn-HSC device of P-doped Ti3C2Tx exhibits a specific capacitance of 207.4 F g−1 and energy densities of 56.5 Wh kg−1. This study also provides valuable insights and a reference for the realization of phosphorus doping in other MXene materials.

Keywords

MXene / phosphorus-terminal groups surface modification / UV irradiation / Zn-ions hybrid supercapacitor

Cite this article

Download citation ▾
Xiaochun Wei, Yongfang Liang, Hailong Shen, Hongying Zhao, Jinyu Wu, Haifu Huang, Xianqing Liang, Wenzheng Zhou, Shuaikai Xu, Huangzhong Yu. The Customization of Phosphorus Terminal for MXene Materials by Photothermal Effect Toward High-Performance Zn-Ion Hybrid Supercapacitors. Battery Energy, 2025, 4(5): e70017 DOI:10.1002/bte2.20240117

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. Wen, Y. Wu, S. Wang, et al., “A Novel TiSe2 (De)Intercalation Type Anode for Aqueous Zinc-Based Energy Storage,” Nano Energy 93 (2022): 106896.

[2]

H. Tang, J. Yao, and Y. Zhu, “Recent Developments and Future Prospects for Zinc-Ion Hybrid Capacitors: A Review,” Advanced Energy Materials 11 (2021): 2003994.

[3]

Y. Li, Z. Wang, Y. Cai, et al., “Designing Advanced Aqueous Zinc-Ion Batteries: Principles, Strategies, and Perspectives,” Energy & Environmental Materials 5 (2022): 823-851.

[4]

Z. Li, Y. An, S. Dong, et al., “Progress on Zinc Ion Hybrid Supercapacitors: Insights and Challenges,” Energy Storage Materials 31 (2020): 252-266.

[5]

N. Chang, T. Li, R. Li, et al., “An Aqueous Hybrid Electrolyte for Low-Temperature Zinc-Based Energy Storage Devices,” Energy & Environmental Science 13 (2020): 3527-3535.

[6]

L. Dong, X. Ma, Y. Li, et al., “Extremely Safe, High-Rate and Ultralong-Life Zinc-Ion Hybrid Supercapacitors,” Energy Storage Materials 13 (2018): 96-102.

[7]

D. Sui, M. Wu, K. Shi, et al., “Recent Progress of Cathode Materials for Aqueous Zinc-Ion Capacitors: Carbon-Based Materials and Beyond,” Carbon 185 (2021): 126-151.

[8]

M. Li, X. Li, G. Qin, et al., “Halogenated Ti3C2 MXenes With Electrochemically Active Terminals for High-Performance Zinc Ion Batteries,” ACS Nano 15 (2021): 1077-1085.

[9]

J. Shi, S. Wang, Q. Wang, et al., “A New Flexible Zinc-Ion Capacitor Based On δ-MnO2@ Carbon Cloth Battery-Type Cathode and MXene@ Cotton Cloth Capacitor-Type Anode,” Journal of Power Sources 446 (2020): 227345.

[10]

S. Wu, Y. Chen, T. Jiao, et al., “An Aqueous Zn-Ion Hybrid Supercapacitor With High Energy Density And Ultrastability Up To 80 000 Cycles,” Advanced Energy Materials 9 (2019): 1902915.

[11]

P. Liu, W. Liu, Y. Huang, P. Li, J. Yan, and K. Liu, “Mesoporous Hollow Carbon Spheres Boosted, Integrated High Performance Aqueous Zn-Ion Energy Storage,” Energy Storage Materials 25 (2020): 858-865.

[12]

T. Hu, J. Li, Y. Wang, et al., “Coupling Between Cathode and Anode in Hybrid Charge Storage,” Joule 7 (2023): 1176-1205.

[13]

A. Vahidmohammadi, J. Rosen, and Y. Gogotsi, “The World of Two-Dimensional Carbides and Nitrides (MXenes),” Science 372 (2021): eabf1581.

[14]

A. Levitt, J. Zhang, G. Dion, Y. Gogotsi, and J. M. Razal, “MXene-Based Fibers, Yarns, and Fabrics for Wearable Energy Storage Devices,” Advanced Functional Materials 30 (2020): 2000793.

[15]

H. Zhang, Q. Liu, Y. Fang, et al., “Boosting Zn-Ion Energy Storage Capability of Hierarchically Porous Carbon by Promoting Chemical Adsorption,” Advanced Materials 31 (2019): 1904948.

[16]

Y. Tian, Y. An, and B. Xu, “MXene-Based Materials for Advanced Nanogenerators,” Nano Energy 10 (2022): 10755.

[17]

N. Zhang, S. Huang, Z. Yuan, J. Zhu, Z. Zhao, and Z. Niu, “Direct Self-Assembly of MXene on Zn Anodes for Dendrite-Free Aqueous Zinc-Ion Batteries,” Angewandte Chemie International Edition 60 (2021): 2861-2865.

[18]

M. Peng, L. Wang, L. Li, et al., “Manipulating the Interlayer Spacing of 3D MXenes With Improved Stability and Zinc-Ion Storage Capability,” Advanced Functional Materials 32 (2021): 2109524.

[19]

Z. Pei, H. Li, Y. Huang, et al., “Texturing In Situ: N,S-Enriched Hierarchically Porous Carbon as a Highly Active Reversible Oxygen Electrocatalyst,” Energy & Environmental Science 10 (2017): 742-749.

[20]

L. Chen, Y. Bi, Y. Jing, et al., “Phosphorus Doping Strategy-Induced Synergistic Modification of Interlayer Structure and Chemical State in Ti3C2Tx Toward Enhancing Capacitance,” Molecules 28 (2023): 4892.

[21]

K. Liu, Q. Xia, L. Si, et al., “Defect Engineered Ti3C2Tx MXene Electrodes by Phosphorus Doping With Eenhanced Kinetics for Supercapacitors,” Electrochimica Acta 435 (2022): 141372.

[22]

Y. Wen, R. Li, J. Liu, et al., “A Temperature-Dependent Phosphorus Doping on Ti3C2Tx MXene for Enhanced Supercapacitance,” Journal of Colloid and Interface Science 604 (2021): 239-247.

[23]

H. Li, A. Liu, X. Ren, et al., “A Black phosphorus/Ti3C2 MXene Nanocomposite for Sodium-Ion Batteries: A Combined Experimental and Theoretical Study,” Nanoscale 11 (2019): 19862-19869.

[24]

H. Huang, G. Luo, L. Xu, et al., “NH3 Assisted Photoreduction and N-Doping of Graphene Oxide for High Performance Electrode Materials in Supercapacitors,” Nanoscale 7 (2015): 2060-2068.

[25]

R. Y. N. Gengler, D. S. Badali, D. Zhang, et al., “Revealing the Ultrafast Process Behind the Photoreduction of Graphene Oxide,” Nature Communications 4 (2013): 2560.

[26]

G. Williams, B. Seger, and P. V. Kamat, “TiO2-Graphene Nanocomposites,” ACS Nano 2 (2008): 1487-1491.

[27]

H. Huang, L. Yan, Y. Liang, et al., “Enhanced Pseudocapacitance of Ti3C2Tx MXene by UV Photochemical Doping,” Applied Physics Letters 123 (2023): 133901.

[28]

T. Li, Y. Hu, J. Zhang, et al., “Doping Effect and Oxygen Vacancy Engineering in Nickel-Manganese Layered Double Hydroxides for High-Performance Supercapacitors,” Nano Energy 126 (2024): 109690.

[29]

Y. Wen, B. Wang, C. Huang, L. Wang, and D. Hulicova-Jurcakova, “Synthesis of Phosphorus-Doped Graphene and Its Wide Potential Window in Aqueous Supercapacitors,” Chemistry—A European Journal 21 (2015): 80-85.

[30]

Y. Tang, C. Yang, M. Sheng, et al.,“Phosphorus-Doped Molybdenum Carbide/Mxene Hybrid Architectures For Upgraded Hydrogen Evolution Reaction Performance Over a Wide Ph Range,” Chemical Engineering Journal 423 (2021): 130183.

[31]

X. Yang, Y. Yao, Q. Wang, et al., “3D Macroporous Oxidation-Resistant Ti3C2Tx MXene Hybrid Hydrogels for Enhanced Supercapacitive Performances With Ultralong Cycle Life,” Advanced Functional Materials 32 (2022): 2109479.

[32]

X. Li, S. Li, Y. Quan, et al., “Promoting Desolvation by Hydrophobic and Zincophilic Adsorption Layer to Achieve Stable Zn Anodes at Low Temperature,” ACS Sustainable Chemistry & Engineering 12 (2024): 7858-7868.

[33]

X. Hui, R. Zhao, P. Zhang, C. Li, C. Wang, and L. Yin, “Low-Temperature Reduction Strategy Synthesized Si/Ti3C2 MXene Composite Anodes for High-Performance Li-Ion Batteries,” Advanced Energy Materials 9 (2019): 1901065.

[34]

N. Zhang, X. Li, Y. Quan, et al., “Hybrid Electrolyte Using Dimethylformamide as Additive to Achieve Outstanding Low Temperature Performance for Zn-Ion Hybrid Supercapacitors,” Journal of Power Sources 598 (2024): 234194.

[35]

M. Naguib, O. Mashtalir, J. Carle, et al., “Two-Dimensional Transition Metal Carbides,” ACS Nano 6 (2012): 1322-1331.

[36]

A. Shahzad, K. Rasool, M. Nawaz, et al., “Heterostructural TiO2/Ti3C2Tx (MXene) for Photocatalytic Degradation of Antiepileptic Drug Carbamazepine,” Chemical Engineering Journal 349 (2018): 748-755.

[37]

J. M. Coronado, A. J. Maira, J. C. Conesa, K. L. Yeung, V. Augugliaro, and J. Soria, “EPR Study of the Surface Characteristics of Nanostructured TiO2 Under UV Irradiation,” Langmuir 17 (2001): 5368-5374.

[38]

Y. Yoon, A. P. Tiwari, M. Choi, et al., “Precious-Metal-Free Electrocatalysts for Activation of Hydrogen Evolution With Nonmetallic Electron Donor: Chemical Composition Controllable Phosphorous Doped Vanadium Carbide MXene,” Advanced Functional Materials 29 (2019): 1903443.

[39]

H. Li, N. Li, Y. Yang, et al., “Self-Sterilization and Self-Powered Real-Time Respiratory Monitoring of Reusable Masks Engineered by Bioinspired Coatings,” Nano Energy 115 (2023): 108754.

[40]

Y. Wen, T. E. Rufford, X. Chen, et al., “Nitrogen-Doped Ti3C2Tx MXene Electrodes for High-Performance Supercapacitors,” Nano Energy 38 (2017): 368-376.

[41]

A. Saha, N. Shpigel, Rosy, et al., “Enhancing the Energy Storage Capabilities of Ti3C2Tx MXene Electrodes by Atomic Surface Reduction,” Advanced Functional Materials 31 (2021): 2106924.

[42]

R. Meng, J. Huang, Y. Feng, et al., “Black Phosphorus Quantum Dot/Ti3C2 MXene Nanosheet Composites for Efficient Electrochemical Lithium/Sodium-Ion Storage,” Advanced Energy Materials 8 (2018): 1801514.

[43]

X. M. Feng, R. M. Li, Y. W. Ma, et al., “One-Step Electrochemical Synthesis of Graphene/Polyaniline Composite Film and Its Applications,” Advanced Functional Materials 21 (2011): 2989-2996.

[44]

Y. Cui, F. Wu, J. Wang, et al., “Three Dimensional Porous MXene/CNTs Microspheres: Preparation, Characterization and Microwave Absorbing Properties,” Composites Part A: Applied Science and Manufacturing 145 (2021): 106378.

[45]

M. Cai, X. Wei, H. Huang, et al., “Nitrogen-Doped Ti3C2Tx MXene Prepared by Thermal Decomposition of Ammonium Salts and Its Application in Flexible Quasi-Solid-State Supercapacitor,” Chemical Engineering Journal 458 (2023): 141338.

[46]

B. Yuan, W. Xing, Y. Hu, et al., “Boron/Phosphorus Doping for Retarding the Oxidation of Reduced Graphene Oxide,” Carbon 101 (2016): 152-158.

[47]

Z. Du, W. Ai, C. Yu, et al., “A Facile Grinding Approach to Embed Red Phosphorus in N,P-Codoped Hierarchical Porous Carbon for Superior Lithium Storage,” Science China Materials 63 (2019): 55-61.

[48]

F. Razmjooei, K. P. Singh, M. Y. Song, and J.-S. Yu, “Enhanced Electrocatalytic Activity Due to Additional Phosphorous Doping in Nitrogen and Sulfur-Doped Graphene: A Comprehensive Study,” Carbon 78 (2014): 257-267.

[49]

Q. Tang, Y. Zhang, X. Zhu, et al., “Hierarchically Porous and Hetero-Structured Black Phosphorus/Ti3C2TXx MXene Aerogel Fiber for Wearable Supercapacitors With Implantable Capability,” Advanced Functional Materials 34 (2024): 2410005.

[50]

R. Zheng, L. Lin, J. Xie, Y. Zhu, and Y. Xie, “State of Doped Phosphorus and Its Influence on the Physicochemical and Photocatalytic Properties of P-Doped Titania,” Journal of Physical Chemistry C 112 (2008): 15502-15509.

[51]

X. S. Dai, T. Shen, and H. C. Liu, “DFT Study on Electronic and Optical Properties of Graphene Modified by Phosphorus,” Materials Research Express 6 (2019): 085635.

[52]

X. Hu, N. Gong, Q. Zhang, et al., “N-Terminalized Ti3C2Tx MXene for Supercapacitor With Extraordinary Pseudocapacitance Performance,” Small 20 (2024): 2306997.

[53]

C. Lu, L. Yang, B. Yan, et al., “Nitrogen-Doped Ti3C2 MXene: Mechanism Investigation and Electrochemical Analysis,” Advanced Functional Materials 30 (2020): 2000852.

[54]

Z. Yuan, L. Wang, J. Cao, L. Zhao, and W. Han, “Ultraviolet-Assisted Construction of Nitrogen-Rich Ag@Ti3C2Tx MXene for Highly Efficient Hydrogen Evolution Electrocatalysis and Supercapacitor,” Advanced Materials Interfaces 7 (2020): 2001449.

[55]

J. Tang, T. S. Mathis, N. Kurra, et al., “Tuning the Electrochemical Performance of Titanium Carbide MXene by Controllable In Situ Anodic Oxidation,” Angewandte Chemie International Edition 58 (2019): 17849-17855.

[56]

M. Cai, H. Yan, Y. Li, et al., “Ti3C2Tx/PANI Composites With Tunable Conductivity Towards Anticorrosion Application,” Chemical Engineering Journal 410 (2021): 128310.

[57]

T. Zhang, J. Xiao, L. Li, J. Zhao, and H. Gao, “A High-Performance Supercapacitor Electrode Based on Freestanding N-Doped Ti3C2Tx Film,” Ceramics International 46 (2020): 21482-21488.

[58]

F. Yang, D. Hegh, D. Song, et al., “A Nitrogenous Pre-Intercalation Strategy for the Synthesis of Nitrogen-Doped Ti3C2Tx MXene With Enhanced Electrochemical Capacitance,” Journal of Materials Chemistry A 9 (2021): 6393-6401.

[59]

Y. Tian, W. Que, Y. Luo, C. Yang, X. Yin, and L. B. Kong, “Surface Nitrogen-Modified 2D Titanium Carbide (MXene) With High Energy Density for Aqueous Supercapacitor Applications,” Journal of Materials Chemistry A 7 (2019): 5416-5425.

[60]

J. Zhu, S. Zhu, Z. Cui, et al., “Dual Redox Reaction Sites for Pseudocapacitance Based on -Ti and -P Functional Groups of Ti3C2PBrx MXene,” Angewandte Chemie International Edition 63 (2024): e202403508.

[61]

H. Li, K. Fan, P. Xiong, et al., “Selective Grafting of Phosphorus Onto Ti3C2Tx MXene Enables a Two-Proton Process and Enhanced Charge Storage,” Journal of Materials Chemistry A 12 (2024): 3449-3459.

[62]

L. Liu, E. Raymundo-Pinero, S. Sunny, P. L. Taberna, and P. Simon, “Role of Surface Terminations for Charge Storage of Ti3C2Tx MXene Electrodes in Aqueous Acidic Electrolyte,” Angewandte Chemie International Edition 6 (2024): e202319238.

[63]

L. Qu, Y. Liu, J.-B. Baek, and L. Dai, “Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells,” ACS Nano 4 (2010): 1321-1326.

[64]

Y. Qian, S. Jiang, Y. Li, et al., “In Situ Revealing the Electroactivity of P-O and P-C Bonds in Hard Carbon for High-Capacity and Long-Life Li/K-Ion Batteries,” Advanced Energy Materials 9 (2019): 1901676.

[65]

Y. Sun, R. Yi, Y. Zhao, et al., “Improved Pseudocapacitances of Supercapacitors Based on Electrodes of Nitrogen-Doped Ti3C2Tx Nanosheets With In-Situ Growth of Carbon Nanotubes,” Journal of Alloys and Compounds 859 (2021): 158347.

[66]

Y. Tian, W. Que, Y. Luo, C. Yang, X. Yin, and L. B. Kong, “Surface Nitrogen-Modified 2D Titanium Carbide (MXene) With High Energy Density for Aqueous Supercapacitor Applications,” Journal of Materials Chemistry A 7 (2019): 5416-5425.

[67]

J. Luo, J. Zheng, J. Nai, et al., “Atomic Sulfur Covalently Engineered Interlayers of Ti3C2 MXene for Ultra-Fast Sodium-Ion Storage by Enhanced Pseudocapacitance,” Advanced Functional Materials 29 (2019): 1808107.

[68]

J. Wang, J. Polleux, J. Lim, and B. Dunn, “Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2(Anatase) Nanoparticles,” Journal of Physical Chemistry C 111 (2007): 14925-14931.

[69]

P. Zhang, Y. Li, G. Wang, et al., “Zn-Ion Hybrid Micro-Supercapacitors With Ultrahigh Areal Energy Density and Long-Term Durability,” Advanced Materials 31 (2019): 1806005.

[70]

M. Chen, J. Chen, W. Zhou, J. Xu, and C.-P. Wong, “High-Performance Flexible and Self-Healable Quasi-Solid-State Zinc-Ion Hybrid Supercapacitor Based on Borax-Crosslinked Polyvinyl Alcohol/Nanocellulose Hydrogel Electrolyte,” Journal of Materials Chemistry A 7 (2019): 26524-26532.

[71]

Q. Wang, S. Wang, X. Guo, et al., “MXene-Reduced Graphene Oxide Aerogel for Aqueous Zinc-Ion Hybrid Supercapacitor With Ultralong Cycle Life,” Advanced Electronic Materials 5 (2019): 1900537.

[72]

Y. Jiang, K. Ma, M. Sun, Y. Li, and J. Liu, “All-Climate Stretchable Dendrite-Free Zn-Ion Hybrid Supercapacitors Enabled by Hydrogel Electrolyte Engineering,” Energy & Environmental Materials 6 (2023): e12357.

[73]

K. Owusu, X. Pan, R. Yu, et al., “Introducing Na2SO4 in Aqueous ZnSO4 Electrolyte Realizes Superior Electrochemical Performance in Zinc-Ion Hybrid Capacitor,” Materials Today Energy 18 (2020): 100529.

[74]

G. Kresse and J. Furthmüller, “Efficient Iterative Schemes Forab Initiototal-Energy Calculations Using a Plane-Wave Basis Set,” Physical Review B 54 (1996): 11169-11186.

[75]

P. E. Blöchl, “Projector Augmented-Wave Method,” Physical Review B 50 (1994): 17953-17979.

[76]

J. P. Perdew, J. A. Chevary, S. H. Vosko, et al., “Atoms,” Physical Review B 46 (1992): 6671-6687.

RIGHTS & PERMISSIONS

2025 The Author(s). Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

23

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/