Renewable Energy Source Integration With Intelligent Neuro-Fuzzy Control for Microgrid System

Chaladi S. Ganga Bhavani , N. Bhanu Prasad , D. Ravi Kishore , Ananda Babu Kancherla

Battery Energy ›› 2025, Vol. 4 ›› Issue (6) : e70031

PDF
Battery Energy ›› 2025, Vol. 4 ›› Issue (6) : e70031 DOI: 10.1002/bte2.20240116
RESEARCH ARTICLE

Renewable Energy Source Integration With Intelligent Neuro-Fuzzy Control for Microgrid System

Author information +
History +
PDF

Abstract

Microgrids (MGs) are a solution to excessive load demand and power grid failure because they provide utility systems with stability and continuous power flow. A controller for a Fuzzy Logic System with neural network that is adaptable (Adaptive Fuzzy Neural Network Inference System) is suggested for a hybrid microgrid that is fueled by renewable energy sources. A modern high-gain Landsman converter is one of the numerous converters in use is employed to increase the solar output and achieve a steady DC-link voltage to provide outputs with high efficiency. The converter control is accomplished via the ANFIS method, a noteworthy substitute that combines two computational techniques: Neural networks and fuzzy set theory (ANN). Using the Crow Search Algorithm (CSA), the ANFIS constraints are reinforced to boost the convergence rate and dependability predictive accuracy rate. PWM-based rectification system controlled by a Proportional-integral control algorithm then links the wind system and microgrid configuration. When power from solar and wind sources is scarce, energy storage battery system (BESS) is used to hold energy for use in the DC connection. The MATLAB platform simulates evaluations of the control strategy. The proposed Landsman converter with high gain demonstrates superior energy efficiency compared to the Super Lift Luo converter, which in turn makes it a more effective solution for stabilizing DC-link voltage and boosting RES outputs in hybrid microgrid systems.

Keywords

ANFIS / ANN / CSA / high gain Landsman converter / RES

Cite this article

Download citation ▾
Chaladi S. Ganga Bhavani, N. Bhanu Prasad, D. Ravi Kishore, Ananda Babu Kancherla. Renewable Energy Source Integration With Intelligent Neuro-Fuzzy Control for Microgrid System. Battery Energy, 2025, 4(6): e70031 DOI:10.1002/bte2.20240116

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. M. Iqbal, S. Kumar, C. Lal, and C. Kumar, “Energy Management System for a Small-Scale Microgrid,” Journal of Electrical Systems and Information Technology 9, no. 5 (2022): 5.

[2]

V. V. Babu, J. Preetha Roselyn, and P. Sundaravadivel, “Multi-Objective Genetic Algorithm Based Energy Management System Considering Optimal Utilization of Grid and Degradation of Battery Storage in Microgrid,” Energy Reports 9 (2023): 5992-6005.

[3]

A. Bharatee, P. K. Ray, and A. Ghosh, “A Power Management Scheme for Grid-Connected PV Integrated With Hybrid Energy Storage System,” Journal of Modern Power Systems and Clean Energy 10, no. 4 (July 2022): 954-963.

[4]

A. Kumar Singh, S. Kumar, and B. Singh, “Solar PV Energy Generation System Interfaced to Three Phase Grid With Improved Power Quality,” IEEE Transactions on Industrial Electronics 67, no. 5 (May 2020): 3798-3808.

[5]

B. S. Revathi and M. Prabhakar, “Solar PV Fed DC Microgrid: Applications, Converter Selection, Design and Testing,” IEEE Access 10 (2022): 87227-87240.

[6]

R. S. Inomoto, J. R. B. A. Monteiro, and A. J. S. Filho, “Boost Converter Control of PV System Using Sliding Mode Control With Integrative Sliding Surface,” IEEE Journal of Emerging and Selected Topics in Power Electronics 10, no. 5 (2022): 5522-5530.

[7]

M. A. Bakar Siddique, A. Asad, R. M. Asif, A. U. Rehman, M. T. Sadiq, and I. Ullah, “Implementation of Incremental Conductance Mppt Algorithm With Integral Regulator by Using Boost Converter in Grid-Connected PV Array,” IETE Journal of Research 69, no. 6 (2023): 3822-3835.

[8]

G. G. Ramanathan and N. Urasaki, “Non-Isolated Interleaved Hybrid Boost Converter for Renewable Energy Applications,” Energies 15, no. 2 (2022): 610.

[9]

M. I. S. Guerra, F. M. Ugulino de Araújo, M. Dhimish, and R. G. Vieira, “Assessing Maximum Power Point Tracking Intelligent Techniques on a PV System With a Buck-Boost Converter,” Energies 14, no. 22 (2021): 7453.

[10]

N. Rana, S. Banerjee, and K. Kumar, “High Gain Buck-Boost Converter for Solar Photovoltaic (PV) System,” DC—DC Converters for Future Renewable Energy Systems (2022): 31-45.

[11]

P. M. García-Vite, J. C. Rosas-Caro, A. L. Martínez-Salazar, J. J. Chavez, A. Valderrábano-González, and V. M. Sánchez-Huerta, “Quadratic Buck-Boost Converter With Reduced Input Current Ripple and Wide Conversion Range,” IET Power Electronics 12, no. 15 (2019): 3977-3986.

[12]

A. Senthilnathan, R. Murugasami, R. Balakrishnan, R. Sundar, and P. Palanivel, “Fuzzy Logic Controlled 3 Port DC to DC Cuk Converter With IoT Based PV Panel Monitoring System,” International Journal of System Assurance Engineering and Management (2022): 1-9.

[13]

Y. Alharbi and A. Darwish, “Control of Cuk-Based Microinverter Topology With Energy Storage for Residential PV Applications,” Energies 16, no. 5 (2023): 2293.

[14]

V. Kumar, S. Ghosh, N. K. S. Naidu, S. Kamal, R. K. Saket, and S. K. Nagar, “A Current Sensor Based Adaptive Step-Size MPPT With Sepic Converter for Photovoltaic Systems,” IET Renewable Power Generation 15, no. 5 (2021): 1085-1099.

[15]

K. S. Kavin and P. Subha Karuvelam, “PV-Based Grid Interactive PMBLDC Electric Vehicle With High Gain Interleaved DC-DC Sepic Converter,” IETE Journal of Research 69, no. 7 (2023): 4791-4805.

[16]

P. K. Maroti, S. Esmaeili, A. Iqbal, and M. Meraj, “High Step-Up Single Switch Quadratic Modified SEPIC Converter for DC Microgrid Applications,” IET Power Electronics 13, no. 16 (2020): 3717-3726.

[17]

C. S. Ganga Bhavani, N. Bhanu Prasad, and D. Ravi Kishore, “Enhancing Grid-Connected Hybrid Renewable Energy System With Super Lift Luo Converter for Improved Power Management and Reduced THD,” Journal of The Institution of Engineers (India): Series B 106 (2024): 1-15.

[18]

K. S. Kavin, P. Subha Karuvelam, M. Devesh Raj, and M. Sivasubramanian, “A Novel KSK Converter With Machine Learning MPPT for PV Applications,” Electric Power Components and Systems (2024): 1-19.

[19]

A. M. Hussien, R. A. Turky, A. Alkuhayli, H. M. Hasanien, and Marcos, “Coot Bird Algorithms-Based Tuning PI Controller for Optimal Microgrid Autonomous Operation,” IEEE Access 10 (2022): 6442-6458.

[20]

M. Vijayan, R. R. Udumula, T. Mahto, et al., “Optimal PI-Controller-Based Hybrid Energy Storage System in DC Microgrid,” Sustainability 14, no. 22 (2022): 14666.

[21]

A.-A. Diego, J. Pascual, F. Guinjoan, et al., “An Energy Management System Design Using Fuzzy Logic Control: Smoothing the Grid Power Profile of a Residential Electro-Thermal Microgrid,” IEEE Access 9 (2021): 25172-25188.

[22]

V. Thomas, K. S., and S. Ashok, “Fuzzy Controller-Based Self-Adaptive Virtual Synchronous Machine for Microgrid Application,” IEEE Transactions on Energy Conversion 36, no. 3 (2021): 2427-2437.

[23]

N. A. Alper, M. R. Habibi, H. R. Baghaee, and E. Dursun, “Dynamic Stabilization of DC Microgrids Using ANN-Based Model Predictive Control,” IEEE Transactions on Energy Conversion 37, no. 2 (June 2022): 999-1010.

[24]

M. Abdolrasol, R. Mohamed, M. Hannan, A. Al-Shetwi, M. Mansor, and F. Blaabjerg, “Artificial Neural Network Based Particle Swarm Optimization for Microgrid Optimal Energy Scheduling,” IEEE Transactions on Power Electronics 36, no. 11 (November 2021): 12151-12157.

[25]

P. Bahram, R. Sangrody, M. Saeedian, O. Gomis-Bellmunt, and E. Pouresmaeil, “Enhancing Microgrid Small-Signal Stability and Reactive Power Sharing Using ANFIS-Tuned Virtual Inductances,” IEEE Access 9 (2021): 104915-104926.

[26]

S. N. V. B. Rao, Y. V. Pavan Kumar, M. Amir, and F. Ahmad, “An Adaptive Neuro-Fuzzy Control Strategy for Improved Power Quality in Multi-Microgrid Clusters,” IEEE Access 10 (2022): 128007-128021.

[27]

S. SIddaraj, U. R. Yaragatti, and N. Harischandrappa, “Coordinated PSO-ANFIS-Based 2 MPPT Control of Microgrid With Solar Photovoltaic and Battery Energy Storage System,” Journal of Sensor and Actuator Networks 12, no. 3 (2023): 45.

[28]

L. A. Aloo, P. K. Kihato, S. I. Kamau, and R. S. Orenge, “Modeling and Control of a Photovoltaic-Wind Hybrid Microgrid System Using GA-ANFIS,” Heliyon 9, no. 4 (2023): e14678.

[29]

S. Padhmanabhaiyappan, R. Karthik, and K. Ayyar, “Optimal Utilization of Interconnected RESS to Microgrid: A Hybrid AWO-ANFIS Technique,” Soft Computing 24 (2020): 10493-10513.

[30]

P. S. Kale and N. Bhasme, “Energy Management System in Microgrid With ANFIS Control Scheme Using Heuristic Algorithm,” Energy 9, no. 4 (2022): 646-655.

[31]

I. Oraa, J. Samanes, J. Lopez, and E. Gubia, “Modeling of a Droop-Controlled Grid-Connected DFIG Wind Turbine,” IEEE Access 10 (2022): 6966-6977.

[32]

M. I. Mosaad, “Direct Power Control of SRG-Based WECSs Using Optimised Fractional-Order PI Controller,” IET Electric Power Applications 14, no. 3 (2020): 409-417.

[33]

A. M. Mahfuz-Ur-Rahman, M. R. Islam, K. M. Muttaqi, and D. Sutanto, “An Effective Energy Management With Advanced Converter and Control for a PV-Battery Storage Based Microgrid to Improve Energy Resiliency,” IEEE Transactions on Industry Applications 57, no. 6 (December 2021): 6659-6668.

[34]

Y. Belkhier and A. Oubelaid, “Novel Design and Adaptive Coordinated Energy Management of Hybrid Fuel-Cells/Tidal/Wind/PV Array Energy Systems With Battery Storage for Microgrids,” Energy Storage 6, no. 1 (2024): e556.

[35]

T. Costa, A. Arcanjo, A. Vasconcelos, et al., “Development of a Method for Sizing a Hybrid Battery Energy Storage System for Application in AC Microgrid,” Energies 16, no. 3 (2023): 1175.

[36]

X. Han, Q. Xu, L. Yue, Y. Dong, G. Xie, and X. Xu, “An Improved Crow Search Algorithm Based on Spiral Search Mechanism for Solving Numerical and Engineering Optimization Problems,” IEEE Access 8 (2020): 92363-92382.

[37]

R. Kushwaha and B. Singh, “Interleaved Landsman Converter Fed EV Battery Charger With Power Factor Correction,” IEEE Transactions on Industry Applications 56, no. 4 (July/August 2020): 4179-4192.

[38]

A. X. Y. Mah, W. S. Ho, M. H. Hassim, et al., “Optimization of a Standalone Photovoltaic-Based Microgrid With Electrical and Hydrogen Loads,” Energy 235 (2021): 121218.

[39]

J. C. Rosas-Caro, J. E. Valdez-Resendiz, J. C. Mayo-Maldonado, A. Alejo-Reyes, and A. Valderrabano-Gonzalez, “Quadratic Buck-Boost Converter With Positive Output Voltage and Minimum Ripple Point Design,” IET Power Electronics 11, no. 7 (2018): 1306-1313.

[40]

P. M. García-Vite, J. C. Rosas-Caro, A. L. Martínez-Salazar, J. J. Chavez, A. Valderrábano-González, and V. M. Sánchez-Huerta, “Quadratic Buck-Boost Converter With Reduced Input Current Ripple and Wide Conversion Range,” IET Power Electronics 12, no. 15 (2019): 3977-3986.

[41]

P. S. Kumar, R. P. S. Chandrasena, V. Ramu, G. N. Srinivas, and K. V. S. M. Babu, “Energy Management System for Small Scale Hybrid Wind Solar Battery Based Microgrid,” IEEE Access 8 (2020): 8336-8345.

[42]

M. Azeroual, Y. Boujoudar, and L. E. Iysaouy, et al., “Energy Management and Control System for Microgrid Based Wind-PV-Battery Using Multi-Agent Systems,” Wind Engineering 46, no. 4 (2022): 1247-1263.

[43]

M. Elkazaz, M. Sumner, and D. Thomas, “Energy Management System for Hybrid PV-Wind-Battery Microgrid Using Convex Programming, Model Predictive and Rolling Horizon Predictive Control With Experimental Validation,” International Journal of Electrical Power & Energy Systems 115 (2020): 105483.

[44]

N. Zhang, N. C. Yang, and J. H. Liu, “Optimal Sizing of PV/Wind/Battery Hybrid Microgrids Considering Lifetime of Battery Banks,” Energies 14, no. 20 (2021): 6655.

[45]

E. N. V. D. V. Prasad, M. Sahani, and P. K. Dash, “A New Adaptive Integral Back Stepping Fractional Order Sliding Mode Control Approach for PV and Wind With Battery System Based DC Microgrid,” Sustainable Energy Technologies and Assessments 52 (2022): 102261.

RIGHTS & PERMISSIONS

2025 The Author(s). Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

83

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/