Enhanced Electrochemical Performance of Aqueous Zinc-Ion Batteries With Porous Basil-Derived Carbon and Nanostructured MnO2 Composite Cathodes

Yuda Prima Hardianto , Abdulmajid A. Mirghni , Syed Shaheen Shah , Haneen Mohammed Alhassan , Mostafa M. Mohamed , Bashir Ahmed Johan , Ananda Sholeh Rifky Hakim , Md. Abdul Aziz

Battery Energy ›› 2025, Vol. 4 ›› Issue (6) : e70024

PDF
Battery Energy ›› 2025, Vol. 4 ›› Issue (6) : e70024 DOI: 10.1002/bte2.20240113
RESEARCH ARTICLE

Enhanced Electrochemical Performance of Aqueous Zinc-Ion Batteries With Porous Basil-Derived Carbon and Nanostructured MnO2 Composite Cathodes

Author information +
History +
PDF

Abstract

This study introduces a novel composite cathode for aqueous zinc-ion batteries (ZIBs), leveraging porous basil-derived activated carbon (BAC) and nanostructured manganese dioxide (MnO2) synthesized through a one-step hydrothermal process. For the first time, basil-derived carbon is integrated with MnO2, resulting in enhanced electrochemical performance. The MnO2/BAC composite delivers a remarkable specific capacity of 237 mAh/g at 0.5 A/g, along with an energy density of 314 Wh/kg and a power density of 0.66 kW/kg, outperforming cathodes made from pristine MnO2 or BAC. These improvements stem from reduced particle size and a synergistic balance of capacitive and diffusive charge storage mechanisms. Density functional theory calculations corroborate the experimental results, revealing the composite's superior quantum capacity (158.7 µC/cm2) and quantum capacitance (80.4 µF/cm2). Stability assessments highlight excellent cycle life, with > 90% capacity retention and 100% Coulombic efficiency over 300 cycles. The exceptional performance is attributed to the material's unique nanostructure, high surface area (1090 m2/g), and optimized porosity. Additionally, practical applications of ZIBs in pouch cell form using the MnO₂/BAC cathode are demonstrated, showcasing its capability to power a toy car over a satisfactory distance. This study establishes a new benchmark for sustainable and cost-effective cathode materials, significantly advancing ZIB technology for high-efficiency energy storage applications.

Keywords

composite materials / energy storage / nanostructured MnO2 / porous carbon / zinc-ion batteries

Cite this article

Download citation ▾
Yuda Prima Hardianto, Abdulmajid A. Mirghni, Syed Shaheen Shah, Haneen Mohammed Alhassan, Mostafa M. Mohamed, Bashir Ahmed Johan, Ananda Sholeh Rifky Hakim, Md. Abdul Aziz. Enhanced Electrochemical Performance of Aqueous Zinc-Ion Batteries With Porous Basil-Derived Carbon and Nanostructured MnO2 Composite Cathodes. Battery Energy, 2025, 4(6): e70024 DOI:10.1002/bte2.20240113

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

T. Hargreaves and L. Middlemiss, “The Importance of Social Relations in Shaping Energy Demand,” Nature Energy 5 (2020): 195-201, https://doi.org/10.1038/s41560-020-0553-5.

[2]

S. Sorrell, “Reducing Energy Demand: A Review of Issues, Challenges and Approaches,” Renewable and Sustainable Energy Reviews 47 (2015): 74-82, https://doi.org/10.1016/j.rser.2015.03.002.

[3]

R. B. Finkelman, A. Wolfe, and M. S. Hendryx, “The Future Environmental and Health Impacts of Coal,” Energy Geoscience 2 (2021): 99-112, https://doi.org/10.1016/j.engeos.2020.11.001.

[4]

Q. Hassan, S. Algburi, A. Z. Sameen, H. M. Salman, and M. Jaszczur, “A Review of Hybrid Renewable Energy Systems: Solar and Wind-Powered Solutions: Challenges, Opportunities, and Policy Implications,” Results in Engineering 20 (2023): 101621, https://doi.org/10.1016/j.rineng.2023.101621.

[5]

A. Aghmadi and O. A. Mohammed, “Energy Storage Systems: Technologies and High-Power Applications,” Batteries 10 (2024): 141, https://doi.org/10.3390/batteries10040141.

[6]

A. J. Khan, S. S. Shah, S. Khan, et al., “2D Metal Borides (Mbenes): Synthesis Methods for Energy Storage Applications,” Chemical Engineering Journal 497 (2024): 154429, https://doi.org/10.1016/j.cej.2024.154429.

[7]

M. F. Ehsan, A. Fazal, S. Hamid, et al., “CoFe2O4 Decorated g-C3N4 Nanosheets: New Insights Into Superoxide Anion Mediated Photomineralization of Methylene Blue,” Journal of Environmental Chemical Engineering 8 (2020): 104556, https://doi.org/10.1016/j.jece.2020.104556.

[8]

J. Xu, X. Cai, S. Cai, et al., “High-Energy Lithium-Ion Batteries: Recent Progress and a Promising Future in Applications,” Energy & Environmental Materials 6 (2023): 1-26, https://doi.org/10.1002/eem2.12450.

[9]

D. Chao, W. Zhou, F. Xie, et al., “Roadmap for Advanced Aqueous Batteries: From Design of Materials to Applications,” in Aqueous Zinc Batter (World Scientific, 2024), 1-44, https://doi.org/10.1142/9789811278327_0001.

[10]

J. Shin and J. W. Choi, “Opportunities and Reality of Aqueous Rechargeable Batteries,” Advanced Energy Materials 10 (2020): 2001386, https://doi.org/10.1002/aenm.202001386.

[11]

L. Yuan, J. Hao, B. Johannessen, et al., “Hybrid Working Mechanism Enables Highly Reversible Zn Electrodes,” EScience 3 (2023): 100096, https://doi.org/10.1016/j.esci.2023.100096.

[12]

L. Yu, J. Li, N. Ahmad, et al., “Recent Progress on Carbon Materials for Emerging Zinc-Ion Hybrid Capacitors,” Journal of Materials Chemistry A 12 (2024): 9400-9420, https://doi.org/10.1039/D4TA00252K.

[13]

J. Dong, J. Duan, R. Cao, et al., “Dendrite-Free Zn Deposition Initiated by Nanoscale Inorganic-Organic Coating-Modified 3D Host for Stable Zn-Ion Battery,” SusMat 4 (2024): e189, https://doi.org/10.1002/sus2.189.

[14]

J. Li, L. Yu, W. Wang, et al., “Sulfur Incorporation Modulated Absorption Kinetics and Electron Transfer Behavior for Nitrogen Rich Porous Carbon Nanotubes Endow Superior Aqueous Zinc Ion Storage Capability,” Journal of Materials Chemistry A 10 (2022): 9355-9362, https://doi.org/10.1039/D1TA10677E.

[15]

Z. Yi, G. Chen, F. Hou, L. Wang, and J. Liang, “Strategies for the Stabilization of Zn Metal Anodes for Zn-Ion Batteries,” Advanced Energy Materials 11 (2021): 2003065, https://doi.org/10.1002/aenm.202003065.

[16]

H. Xu, W. Yang, M. Li, et al., “Advances in Aqueous Zinc Ion Batteries Based on Conversion Mechanism: Challenges, Strategies, and Prospects,” Small 20 (2024): 2310972, https://doi.org/10.1002/smll.202310972.

[17]

S. K. Ghosh, “Diversity in the Family of Manganese Oxides at the Nanoscale: From Fundamentals to Applications,” ACS Omega 5 (2020): 25493-25504, https://doi.org/10.1021/acsomega.0c03455.

[18]

Y. Xu, G. Zhang, J. Liu, et al., “Recent Advances on Challenges and Strategies of Manganese Dioxide Cathodes for Aqueous Zinc-Ion Batteries,” Energy & Environmental Materials 6 (2023): 1-24, https://doi.org/10.1002/eem2.12575.

[19]

X. Ke, L. Li, S. Wang, et al., “Mn-Oxide Cathode Material for Aqueous Zn-Ion Battery: Structure, Mechanism, and Performance,” Next Energy 2 (2024): 100095, https://doi.org/10.1016/j.nxener.2023.100095.

[20]

X. Chen, W. Li, Z. Zeng, D. Reed, X. Li, and X. Liu, “Engineering Stable Zn-MnO2 Batteries by Synergistic Stabilization Between the Carbon Nanofiber Core and birnessite-MnO2 Nanosheets Shell,” Chemical Engineering Journal 405 (2021): 126969, https://doi.org/10.1016/j.cej.2020.126969.

[21]

R. Han, Y. Pan, C. Du, et al., “Eu Doping β-MnO2 as Cathode Materials for High Specific Capacity Aqueous Zinc Ion Batteries,” Journal of Energy Storage 80 (2024): 110250, https://doi.org/10.1016/j.est.2023.110250.

[22]

Y. Sun, Y. Ba, and J. Sun, “S-MnO2/Graphene Composites With High Electrochemical Properties as Cathode of Aqueous Zinc-Ion Battery,” Materials Letters 359 (2024): 135917, https://doi.org/10.1016/j.matlet.2024.135917.

[23]

Y. He, Y. Pu, Y. Zheng, et al., “Carbon Nanofiber-Coated MnO Composite as High-Performance Cathode Material for Aqueous Zinc-Ion Batteries,” Journal of Physics and Chemistry of Solids 184 (2024): 111669, https://doi.org/10.1016/j.jpcs.2023.111669.

[24]

S. Khamsanga, R. Pornprasertsuk, T. Yonezawa, A. A. Mohamad, and S. Kheawhom, “δ-MnO2 Nanoflower/Graphite Cathode for Rechargeable Aqueous Zinc Ion Batteries,” Scientific Reports 9 (2019): 8441, https://doi.org/10.1038/s41598-019-44915-8.

[25]

B. Wu, G. Zhang, M. Yan, et al., “Graphene Scroll-Coated α-MnO2 Nanowires as High-Performance Cathode Materials for Aqueous Zn-Ion Battery,” Small 14 (2018): 1703850, https://doi.org/10.1002/smll.201703850.

[26]

H. Tang, C. Liu, R. Zhou, et al., “Synergistic Effect of Small-Size MnO2 Nanodots and Conductive Reduced Graphene Oxide Boosting Cathode Materials for High-Performance Aqueous Zinc-Based Energy Storage,” Journal of Power Sources 566 (2023): 232915, https://doi.org/10.1016/j.jpowsour.2023.232915.

[27]

H. He, R. Zhang, P. Zhang, et al., “Functional Carbon From Nature: Biomass-Derived Carbon Materials and the Recent Progress of Their Applications,” Advanced Science 10 (2023): 2205557, https://doi.org/10.1002/advs.202205557.

[28]

S. S. Shah, M. A. Aziz, M. Ali, A. S. Hakeem, and Z. H. Yamani, “Advanced High-Energy All-Solid-State Hybrid Supercapacitor With Nickel-Cobalt-Layered Double Hydroxide Nanoflowers Supported on Jute Stick-Derived Activated Carbon Nanosheets,” Small 20 (2024): 2306665, https://doi.org/10.1002/smll.202306665.

[29]

S. Ullah, N. Ullah, S. S. Shah, et al., “Theoretical and Experimental Progress in Photothermal Catalysis for Sustainable Energy and Environmental Protection: Key Problems and Strategies Towards Commercialization,” Renewable and Sustainable Energy Reviews 201 (2024): 114615, https://doi.org/10.1016/j.rser.2024.114615.

[30]

S. Shaheen Shah, S. Oladepo, M. Ali Ehsan, et al., “Recent Progress in Polyaniline and Its Composites for Supercapacitors,” Chemical Record 24 (2024): e202300105, https://doi.org/10.1002/tcr.202300105.

[31]

M. Antar, D. Lyu, M. Nazari, A. Shah, X. Zhou, and D. L. Smith, “Biomass for a Sustainable Bioeconomy: An Overview of World Biomass Production and Utilization,” Renewable and Sustainable Energy Reviews 139 (2021): 110691, https://doi.org/10.1016/j.rser.2020.110691.

[32]

S. Singh, M. Singh, A. K. Singh, A. Kalra, A. Yadav, and D. D. Patra, “Enhancing Productivity of Indian Basil (Ocimum basilicum L.) Through Harvest Management Under Rainfed Conditions of Subtropical North Indian Plains,” Industrial Crops and Products 32 (2010): 601-606, https://doi.org/10.1016/j.indcrop.2010.07.007.

[33]

A. A. Mirghni, D. Momodu, K. O. Oyedotun, J. K. Dangbegnon, and N. Manyala, “Electrochemical Analysis of Co3(PO4)2·4H2O/Graphene Foam Composite for Enhanced Capacity and Long Cycle Life Hybrid Asymmetric Capacitors,” Electrochimica Acta 283 (2018): 374-384, https://doi.org/10.1016/j.electacta.2018.06.181.

[34]

A. A. Mirghni, K. O. Oyedotun, B. A. Mahmoud, A. Bello, S. C. Ray, and N. Manyala, “Nickel-Cobalt Phosphate/Graphene Foam as Enhanced Electrode for Hybrid Supercapacitor,” Composites, Part B: Engineering 174 (2019): 106953, https://doi.org/10.1016/j.compositesb.2019.106953.

[35]

A. A. Mirghni, K. O. Oyedotun, B. A. Mahmoud, O. Fasakin, D. J. Tarimo, and N. Manyala, “A Study of Co-Mn Phosphate Supported With Graphene Foam as Promising Electrode Materials for Future Electrochemical Capacitors,” International Journal of Energy Research 46 (2022): 3080-3094, https://doi.org/10.1002/er.7365.

[36]

A. K. Yadav, S. N. S., R. Singh, P. P. Das, V. Garg, and S. K. Pandey, “DFT Calculations for Temperature Stable Quantum Capacitance of VS2 Based Electrodes for Supercapacitors,” IEEE Transactions on Nanotechnology 23 (2024): 132-138, https://doi.org/10.1109/TNANO.2024.3358017.

[37]

S. S. Shah, M. A. Aziz, E. Cevik, et al., “Sulfur Nano-Confinement in Hierarchically Porous Jute Derived Activated Carbon Towards High-Performance Supercapacitor: Experimental and Theoretical Insights,” Journal of Energy Storage 56 (2022): 105944, https://doi.org/10.1016/j.est.2022.105944.

[38]

K. Dujearic-Stephane, M. Gupta, A. Kumar, et al., “The Effect of Modifications of Activated Carbon Materials on the Capacitive Performance: Surface, Microstructure, and Wettability,” Journal of Composites Science 5 (2021): 66, https://doi.org/10.3390/jcs5030066.

[39]

X. Shao, M. Liang, A. Kumar, et al., “Amorphization of Metal Nanoparticles by 2D Twisted Polymer for Super Hydrogen Evolution Reaction,” Advanced Energy Materials 12 (2022): 2102257, https://doi.org/10.1002/aenm.202102257.

[40]

N. Shimodaira and A. Masui, “Raman Spectroscopic Investigations of Activated Carbon Materials,” Journal of Applied Physics 92 (2002): 902-909, https://doi.org/10.1063/1.1487434.

[41]

R. Muzyka, E. Misztal, J. Hrabak, S. W. Banks, and M. Sajdak, “Various Biomass Pyrolysis Conditions Influence the Porosity and Pore Size Distribution of Biochar,” Energy 263 (2023): 126128, https://doi.org/10.1016/j.energy.2022.126128.

[42]

L. Feng, Z. Xuan, H. Zhao, et al., “MnO2 Prepared by Hydrothermal Method and Electrochemical Performance as Anode for Lithium-Ion Battery,” Nanoscale Research Letters 9 (2014): 290, https://doi.org/10.1186/1556-276X-9-290.

[43]

M. Jahan and F. Feni, “Environmentally Friendly Bifunctional Catalyst for ORR and OER From Coconut Shell Particles,” Advances in Materials Physics and Chemistry 12 (2022): 106-123, https://doi.org/10.4236/ampc.2022.125008.

[44]

M. M. Mohamed, Y. P. Hardianto, A. Hussain, S. A. Ganiyu, M. A. Gondal, and M. A. Aziz, “Laser Modified MnO2 Cathode for Augmented Performance Aqueous Zinc Ion Batteries,” Applied Surface Science 669 (2024): 160472, https://doi.org/10.1016/j.apsusc.2024.160472.

[45]

M. M. Mohamed, S. S. Shah, Y. P. Hardianto, A. Hussain, M. A. Gondal, and M. A. Aziz, “Pulsed Laser-Modified Zinc Anode With Improved Dendrite and Corrosion Resistance for Sustainable High Performance Zinc Ion Hybrid Supercapacitors,” Materials Chemistry and Physics 326 (2024): 129809, https://doi.org/10.1016/j.matchemphys.2024.129809.

[46]

M. M. Mohamed, M. A. Aziz, A. Hussain, Y. P. Hardianto, and Z. H. Yamani, “Dendrite-Free Zinc-Ion Hybrid Supercapacitor With Jute-Derived Carbon and Nanostructured Zinc on Steel Mesh for EVs,” Journal of Energy Storage 100 (2024): 113635, https://doi.org/10.1016/j.est.2024.113635.

[47]

Y. Prima Hardianto, N. A. Noorwali, S. Shaheen Shah, et al., “Platinum/Stainless-Steel Mesh Electrode Fabrication via Chemically Thermal Reduction for Efficient Hydrogen Evolution Reaction,” Journal of Electroanalytical Chemistry 975 (2024): 118723, https://doi.org/10.1016/j.jelechem.2024.118723.

[48]

N. A. Noorwali, Y. P. Hardianto, S. S. Shah, et al., “Investigating Electrodeposition of Platinum Nanoparticles on Stainless-Steel Mesh Electrodes for Hydrogen Evolution Reaction,” Journal of the Electrochemical Society 171 (2024): 112503, https://doi.org/10.1149/1945-7111/ad8f68.

[49]

P. He, Y. Quan, X. Xu, et al., “High-Performance Aqueous Zinc-Ion Battery Based on Layered H2V3O8 Nanowire Cathode,” Small 13 (2017): 1702551, https://doi.org/10.1002/smll.201702551.

[50]

F. Gao, B. Mei, X. Xu, et al., “Rational Design of ZnMn2O4 Nanoparticles on Carbon Nanotubes for High-Rate and Durable Aqueous Zinc-Ion Batteries,” Chemical Engineering Journal 448 (2022): 137742, https://doi.org/10.1016/j.cej.2022.137742.

[51]

B. Sambandam, V. Soundharrajan, S. Kim, et al., “K2V6O16·2.7H2O Nanorod Cathode: An Advanced Intercalation System for High Energy Aqueous Rechargeable Zn-Ion Batteries,” Journal of Materials Chemistry A 6 (2018): 15530-15539, https://doi.org/10.1039/c8ta02018c.

[52]

N. Qiu, Z. Yang, R. Xue, Y. Wang, Y. Zhu, and W. Liu, “Toward a High-Performance Aqueous Zinc Ion Battery: Potassium Vanadate Nanobelts and Carbon Enhanced Zinc Foil,” Nano Letters 21 (2021): 2738-2744, https://doi.org/10.1021/acs.nanolett.0c04539.

[53]

X. Li, M. Li, Q. Yang, et al., “In Situ Electrochemical Synthesis of MXenes Without Acid/Alkali Usage in/for an Aqueous Zinc Ion Battery,” Advanced Energy Materials 10 (2020): 2001791, https://doi.org/10.1002/aenm.202001791.

[54]

Z. Wu, C. Lu, Y. Wang, et al., “Ultrathin VSe2 Nanosheets With Fast Ion Diffusion and Robust Structural Stability for Rechargeable Zinc-Ion Battery Cathode,” Small 16 (2020): 2000698, https://doi.org/10.1002/smll.202000698.

[55]

N. Zhang, F. Cheng, Y. Liu, et al., “Cation-Deficient Spinel ZnMn2O4 Cathode in Zn(CF3SO3)2 Electrolyte for Rechargeable Aqueous Zn-Ion Battery,” Journal of the American Chemical Society 138 (2016): 12894-12901, https://doi.org/10.1021/jacs.6b05958.

[56]

D. Zhang, J. Cao, X. Zhang, et al., “Inhibition of Manganese Dissolution in Mn2O3 Cathode With Controllable Ni2+ Incorporation for High-Performance Zinc Ion Battery,” Advanced Functional Materials 31 (2021): 2009412, https://doi.org/10.1002/adfm.202009412.

[57]

H. Luo, B. Wang, F. Wu, et al., “Synergistic Nanostructure and Heterointerface Design Propelled Ultra-Efficient In-Situ Self-Transformation of Zinc-Ion Battery Cathodes With Favorable Kinetics,” Nano Energy 81 (2021): 105601, https://doi.org/10.1016/j.nanoen.2020.105601.

[58]

Y. Liu, J. Wang, Y. Zeng, J. Liu, X. Liu, and X. Lu, “Interfacial Engineering Coupled Valence Tuning of MoO3 Cathode for High-Capacity and High-Rate Fiber-Shaped Zinc-Ion Batteries,” Small 16 (2020): 1907458, https://doi.org/10.1002/smll.201907458.

RIGHTS & PERMISSIONS

2025 The Author(s). Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

86

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/