PDF
Abstract
Potassium-ion batteries as a suitable alternative to lithium-ion batteries have drawn attention due to available sources of potassium, low reduction potential, better diffusion through electrolyte/electrode interface, and good ionic conductivity. Here, a photopolymerized porous gel polymer electrolyte based on poly(poly[ethylene glycol] methyl ether methacrylate) and poly(methyl methacrylate) nanoparticles shows superior thermal and electrochemical properties. After swelling in a KPF6 and EC/PC solution, the best GPE demonstrates high ionic conductivity of 2.9 × 10−2 S cm−1, potassium transference number of 0.88, and high electrochemical stability of > 6 V. This excellent electrochemical property could be related to high solvent uptake, high surface area, K+ pathway channels, low Tg, and the electron donor groups of the porous poly(poly[ethylene glycol] methyl ether methacrylate). Also, this GPE shows an initial capacity of 155 mAh g−1, an initial Coulombic efficiency of ~100%, and capacity retention of 99.9% after 100 cycles in a high current density of 5 C with high-voltage FeFe(CN)6 as the cathode and graphite as the anode. FE-SEM images show the ability to suppress dendrites after 100 cycles of charge-discharge at 5 C. Additionally, this GPE demonstrates 143 mAh g−1 capacity at a very high C-rate of 10, showing its ability for use in high-performing rechargeable potassium batteries.
Keywords
gel polymer electrolyte
/
poly(poly[ethylene glycol] methyl ether methacrylate)
/
porous polymer electrolyte
/
potassium-ion battery
Cite this article
Download citation ▾
Ali Zardehi-Tabriz, Hadiseh Anavi, Yoones Ghayebzadeh, Hossein Roghani-Mamaqani, Mehdi Salami-Kalajahi.
Porous Poly(Poly[Ethylene Glycol] Methyl Ether Methacrylate) Gel Polymer Electrolyte With Superior Electrochemical Properties in a High-Performance Potassium-Ion Battery.
Battery Energy, 2025, 4(5): e20240096 DOI:10.1002/bte2.20240096
| [1] |
T. Kim, W. Song, D. Y. Son, L. K. Ono, and Y. Qi, “Lithium-Ion Batteries: Outlook on Present, Future, and Hybridized Technologies,” Journal of Materials Chemistry A 7 (2019): 2942-2964, https://doi.org/10.1039/C8TA10513H.
|
| [2] |
M. Golshan and M. Salami-Kalajahi, “Unraveling Chromism-Induced Marvels in Energy Storage Systems,” Progress in Materials Science 148 (2025): 101374, https://doi.org/10.1016/j.pmatsci.2024.101374.
|
| [3] |
J. Xu, X. Cai, S. Cai, et al., “High-Energy Lithium-Ion Batteries: Recent Progress and a Promising Future in Applications,” Energy & Environmental Materials 6 (2023): e12450, https://doi.org/10.1002/eem2.12450.
|
| [4] |
A. Eftekhari, Z. Jian, and X. Ji, “Potassium Secondary Batteries,” ACS Applied Materials & Interfaces 9 (2017): 4404-4419, https://doi.org/10.1021/acsami.6b07989.
|
| [5] |
Y. H. Zhu, X. Yang, D. Bao, et al., “High-Energy-Density Flexible Potassium-Ion Battery Based on Patterned Electrodes,” Joule 2 (2018): 736-746, https://doi.org/10.1016/j.joule.2018.01.010.
|
| [6] |
Y. Zhu, Y. Yin, X. Yang, et al., “Transformation of Rusty Stainless-Steel Meshes Into Stable, Low-Cost, and Binder-Free Cathodes for High-Performance Potassium-Ion Batteries,” Angewandte Chemie International Edition 56 (2017): 7881-7885, https://doi.org/10.1002/anie.201702711.
|
| [7] |
W. B. Park, S. C. Han, C. Park, et al., “KVP2O7 as a Robust High-Energy Cathode for Potassium-Ion Batteries: Pinpointed by a Full Screening of the Inorganic Registry Under Specific Search Conditions,” Advanced Energy Materials 8 (2018): 1703099, https://doi.org/10.1002/aenm.201703099.
|
| [8] |
J. C. Pramudita, D. Sehrawat, D. Goonetilleke, and N. Sharma, “An Initial Review of the Status of Electrode Materials for Potassium-Ion Batteries,” Advanced Energy Materials 7 (2017): 1602911, https://doi.org/10.1002/aenm.201602911.
|
| [9] |
R. Rajagopalan, Y. Tang, X. Ji, C. Jia, and H. Wang, “Advancements and Challenges in Potassium Ion Batteries: A Comprehensive Review,” Advanced Functional Materials 30 (2020): 1909486, https://doi.org/10.1002/adfm.201909486.
|
| [10] |
Y. Huang, L. Zhao, L. Li, M. Xie, F. Wu, and R. Chen, “Electrolytes and Electrolyte/Electrode Interfaces in Sodium-Ion Batteries: From Scientific Research to Practical Application,” Advanced Materials 31 (2019): 1808393, https://doi.org/10.1002/adma.201808393.
|
| [11] |
E. Kohan, R. Khoshnavazi, M. G. Hosseini, A. Salimi, and M. Salami-Kalajahi, “A Review on Instability Factors of Mono- and Divalent Metal Ion Batteries: From Fundamentals to Approaches,” Journal of Materials Chemistry A 12 (2024): 30190-30248, https://doi.org/10.1039/D4TA05386A.
|
| [12] |
X. Zhou, Q. Liu, C. Jiang, et al., “Strategies Towards Low-Cost Dual-Ion Batteries With High Performance,” Angewandte Chemie International Edition 59 (2020): 3802-3832, https://doi.org/10.1002/anie.201814294.
|
| [13] |
A. Enayati-Gerdroodbar, S. N. Eliseeva, and M. Salami-Kalajahi, “A Review on the Effect of Nanoparticles/Matrix Interactions on the Battery Performance of Composite Polymer Electrolytes,” Journal of Energy Storage 68 (2023): 107836, https://doi.org/10.1016/j.est.2023.107836.
|
| [14] |
G. Xi, M. Xiao, S. Wang, D. Han, Y. Li, and Y. Meng, “Polymer-Based Solid Electrolytes: Material Selection, Design, and Application,” Advanced Functional Materials 31 (2021): 2007598, https://doi.org/10.1002/adfm.202007598.
|
| [15] |
C. Sångeland, R. Younesi, J. Mindemark, and D. Brandell, “Towards Room Temperature Operation of all-Solid-State Na-Ion Batteries Through Polyester-Polycarbonate-Based Polymer Electrolytes,” Energy Storage Materials 19 (2019): 31-38, https://doi.org/10.1016/j.ensm.2019.03.022.
|
| [16] |
A. E. Gerdroodbar, H. Alihemmati, S. A. Safavi-Mirmahaleh, et al., “A Review on Ion Transport Pathways and Coordination Chemistry Between Ions and Electrolytes in Energy Storage Devices,” Journal of Energy Storage 74 (2023): 109311, https://doi.org/10.1016/j.est.2023.109311.
|
| [17] |
M. Balaish, J. C. Gonzalez-Rosillo, K. J. Kim, Y. Zhu, Z. D. Hood, and J. L. M. Rupp, “Processing Thin but Robust Electrolytes for Solid-State Batteries,” Nature Energy 6 (2021): 227-239, https://doi.org/10.1038/s41560-020-00759-5.
|
| [18] |
D. Karabelli, K. P. Birke, and M. Weeber, “A Performance and Cost Overview of Selected Solid-State Electrolytes: Race Between Polymer Electrolytes and Inorganic Sulfide Electrolytes,” Batteries 7, no. 1 (2021): 18, https://doi.org/10.3390/batteries7010018.
|
| [19] |
M. Salami-Kalajahi, “Polymers From Renewable Resources: Energy Storage Applications,” Polymers From Renewable Resources 15 (2024): 497-502, https://doi.org/10.1177/20412479241283844.
|
| [20] |
Y. Zeng, J. Yang, X. Shen, et al., “New UV-Initiated Lithiated-Interpenetrating Network Gel-Polymer Electrolytes for Lithium-Metal Batteries,” Journal of Power Sources 541 (2022): 231681, https://doi.org/10.1016/j.jpowsour.2022.231681.
|
| [21] |
L. Bai, M. Webhi, G. Dolphijn, B. Améduri, and J. F. Gohy, “Solid Polymer Electrolytes From Copolymers Based on Vinyl Dimethyl Phosphonate and Vinylidene Fluoride,” Macromolecular Chemistry and Physics 222 (2021): 2000389, https://doi.org/10.1002/macp.202000389.
|
| [22] |
Z. Xue, D. He, and X. Xie, “Poly (Ethylene Oxide)-Based Electrolytes for Lithium-Ion Batteries,” Journal of Materials Chemistry A 3 (2015): 19218-19253, https://doi.org/10.1039/C5TA03471J.
|
| [23] |
J. Zhu, Z. Zhang, S. Zhao, A. S. Westover, I. Belharouak, and P. F. Cao, “Single-Ion Conducting Polymer Electrolytes for Solid-State Lithium-Metal Batteries: Design, Performance, and Challenges,” Advanced Energy Materials 11 (2021): 2003836, https://doi.org/10.1002/aenm.202003836.
|
| [24] |
M. Zhu, J. Wu, Y. Wang, et al., “Recent Advances in Gel Polymer Electrolyte for High-Performance Lithium Batteries,” Journal of Energy Chemistry 37 (2019): 126-142, https://doi.org/10.1016/j.jechem.2018.12.013.
|
| [25] |
N. K. Jyothi, K.K. Venkataratnam, P. N. Murty, and K. V. Kumar, “Preparation and Characterization of PAN-KI Complexed Gel Polymer Electrolytes for Solid-State Battery Applications,” Bulletin of Materials Science 39 (2016): 1047-1055, https://doi.org/10.1007/s12034-016-1241-8.
|
| [26] |
Y. Zhang, A. Bahi, F. Ko, and J. Liu, “Polyacrylonitrile-Reinforced Composite Gel Polymer Electrolytes for Stable Potassium Metal Anodes,” Small 18 (2022): 2107186, https://doi.org/10.1002/smll.202107186.
|
| [27] |
H. Gao, L. Xue, S. Xin, and J. B. Goodenough, “A High-Energy-Density Potassium Battery With a Polymer-Gel Electrolyte and a Polyaniline Cathode,” Angewandte Chemie 130 (2018): 5547-5551, https://doi.org/10.1002/ange.201802248.
|
| [28] |
Y. Pavani, M. Ravi, S. Bhavani, R. S. Karthikeya, and V. V. R. Narasimha Rao, “Physical Investigations on Pure and KBr Doped Poly(Vinyl Alcohol) (PVA) Polymer Electrolyte Films for Solid State Battery Applications,” Journal of Materials Science: Materials in Electronics 29 (2018): 5518-5524, https://doi.org/10.1007/s10854-018-8520-7.
|
| [29] |
P. Bennington, C. Deng, D. Sharon, et al., “Role of Solvation Site Segmental Dynamics on Ion-Transport in Ethyleneoxide Based Side-Chain Polymer Electrolytes,” Journal of Materials Chemistry A 9 (2021): 9937-9951, https://doi.org/10.1039/D1TA00899D.
|
| [30] |
S. Choudhury, S. Stalin, D. Vu, et al., “Solidstate Polymer Electrolytes for High-Performance Lithium Metal Batteries,” Nature Communications 10 (2019): 4398, https://doi.org/10.1038/s41467-019-12423-y.
|
| [31] |
J. Mindemark, M. J. Lacey, T. Bowden, and D. Brandell, “Beyond PEO—Alternative Host Materials for Li+-Conducting Solid Polymer Electrolytes,” Progress in Polymer Science 81 (2018): 114-143, https://doi.org/10.1016/j.progpolymsci.2017.12.004.
|
| [32] |
G. Homann, L. Stolz, J. Nair, I. C. Laskovic, M. Winter, and J. Kasnatscheew, “Poly (Ethylene Oxide)-Based Electrolyte for Solid-State-Lithium-Batteries With High Voltage Positive Electrodes: Evaluating the Role of Electrolyte Oxidation in Rapid Cell Failure,” Scientific Reports 10 (2020): 4390, https://doi.org/10.1038/s41598-020-61373-9.
|
| [33] |
Y. Jiang, X. Yan, Z. Ma, et al., “Development of the PEO Based Solid Polymer Electrolytes for all-Solid State Lithium Ion Batteries,” Polymers 10 (2018): 1237, https://doi.org/10.3390/polym10111237.
|
| [34] |
M. Elmanzalawy, E. Sanchez-Ahijón, O. Kisacik, J. Carretero-González, and E. Castillo-Martínez, “High Conductivity in a Fluorine-Free K-Ion Polymer Electrolyte,” ACS Applied Energy Materials 5 (2022): 9009-9019, https://doi.org/10.1021/acsaem.2c01485.
|
| [35] |
A. D. Khudyshkina, P. A. Morozova, A. J. Butzelaar, et al., “Poly(Ethylene Oxide)-Based Electrolytes for Solid-State Potassium Metal Batteries With a Prussian Blue Positive Electrode,” ACS Applied Polymer Materials 4 (2022): 2734-2746, https://doi.org/10.1021/acsapm.2c00014.
|
| [36] |
R. Nadimicherla, A. K. Sharma, V. V. R. N. Rao, and W. Chen, “Electrical and Solid-State Battery Performance of a New PVC/PEO+KBr Blend-Based Polymer Electrolyte System,” Ionics 21 (2015): 1587-1594, https://doi.org/10.1007/s11581-014-1314-x.
|
| [37] |
A. Chiappone, J. R. Nair, C. Gerbaldi, E. Zeno, and R. Bongiovanni, “Cellulose/Acrylate Membranes for Flexible Lithium Batteries Electrolytes: Balancing Improved Interfacial Integrity and Ionic Conductivity,” European Polymer Journal 57 (2014): 22-29, https://doi.org/10.1016/j.eurpolymj.2014.05.004.
|
| [38] |
J. Shi, Y. Yang, and H. Shao, “Co-Polymerization and Blending Based PEO/PMMA/P(VDF-HFP) Gel Polymer Electrolyte for Rechargeable Lithium Metal Batteries,” Journal of Membrane Science 547 (2018): 1-10, https://doi.org/10.1016/j.memsci.2017.10.033.
|
| [39] |
P. L. Kuo, C. A. Wu, C. Y. Lu, C. H. Tsao, C. H. Hsu, and S. S. Hou, “High Performance of Transferring Lithium Ion for Polyacrylonitrile-Interpenetrating Crosslinked Polyoxyethylene Network as Gel Polymer Electrolyte,” ACS Applied Materials & Interfaces 6 (2014): 3156-3162, https://doi.org/10.1021/am404248b.
|
| [40] |
M. Bergman, A. Bergfelt, B. Sun, T. Bowden, D. Brandell, and P. Johansson, “Graft Copolymer Electrolytes for High Temperature Li-Battery Applications, Using Poly (Methyl Methacrylate) Grafted Poly (Ethylene Glycol) Methyl Ether Methacrylate and Lithium Bis (Trifluoromethanesulfonimide),” Electrochimica Acta 175 (2015): 96-103, https://doi.org/10.1016/j.electacta.2015.01.226.
|
| [41] |
J. Ma, X. Ma, Q. Zhang, et al., “Star-Shaped Polyethylene Glycol Methyl Ether Methacrylate-Co-Polyhedral Oligomeric Silsesquioxane Modified Poly (Ethylene Oxide)-Based Solid Polymer Electrolyte for Lithium Secondary Battery,” Solid State Ionics 380 (2022): 115923, https://doi.org/10.1016/j.ssi.2022.115923.
|
| [42] |
H. Tian, X. Huang, C. Yang, Y. Wu, C. Zhang, and Y. Yang, “Realization of Enhanced Interfacial Lithium-Ion Transfer in Composite Polymer Electrolytes via Grafting Oligo-PEG Molecular Brushes on Silica-Coated Nanofibers for all-Solid-State Lithium Metal Batteries,” ACS Applied Materials & Interfaces 16 (2024): 34069-34078, 34069-3407, https://doi.org/10.1021/acsami.4c04864.
|
| [43] |
Z. Li, Y. Gao, W. Wang, et al., “In Situ Bridging Soft Polymer and Robust Metal-Organic Frameworks as Electrolyte for Long-Cycling Solid-State Potassium-Organic Batteries,” Energy Storage Materials 72 (2024): 103732, https://doi.org/10.1016/j.ensm.2024.103732.
|
| [44] |
H. Yang, W. Wang, Z. Huang, et al., “Weak Electrostatic Force on K+ in Gel Polymer Electrolyte Realizes High Ion Transference Number for Quasi Solid-State Potassium Ion Batteries,” Advanced Materials 36 (2024): 2401008, https://doi.org/10.1002/adma.202401008.
|
| [45] |
X. Bie, K. Kubota, T. Hosaka, K. Chihara, and S. Komaba, “A Novel K-Ion Battery: Hexacyanoferrate (II)/Graphite Cell,” Journal of Materials Chemistry A 5 (2017): 4325-4330, https://doi.org/10.1039/C7TA00220C.
|
| [46] |
W. Chen, X. Liu, Y. Liu, Y. Bang, and H. I. Kim, “Synthesis of PMMA and PMMA/PS Nanoparticles by Microemulsion Polymerization With a New Vapor Monomer Feeding System,” Colloids and Surfaces, A: Physicochemical and Engineering Aspects 364 (2010): 145-150, https://doi.org/10.1016/j.colsurfa.2010.05.010.
|
| [47] |
Z. Shadike, D. R. Shi, T. W. Tian-Wang, et al., “Long Life and High-Rate Berlin Green FeFe(CN)6 Cathode Material for a Non-Aqueous Potassium-Ion Battery,” Journal of Materials Chemistry A 5 (2017): 6393-6398, https://doi.org/10.1039/C7TA00484B.
|
| [48] |
Y. Zhang, W. Lu, L. Cong, et al., “Cross-Linking Network Based on Poly (Ethylene Oxide): Solid Polymer Electrolyte for Room Temperature Lithium Battery,” Journal of Power Sources 420 (2019): 63-72, https://doi.org/10.1016/j.jpowsour.2019.02.090.
|
| [49] |
L. Xu, G. Li, J. Guan, L. Wang, J. Chen, and J. Zheng, “Garnet-Doped Composite Polymer Electrolyte With High Ionic Conductivity for Dendrite-Free Lithium Batteries,” Journal of Energy Storage 24 (2019): 100767, https://doi.org/10.1016/j.est.2019.100767.
|
| [50] |
T. Hosaka, T. Matsuyama, K. Kubota, S. Yasuno, and S. Komaba, “Development of KPF6/KFSA Binary-Salt Solutions for Long-Life and High-Voltage K-Ion Batteries,” ACS Applied Materials & Interfaces 12 (2020): 34873-34881, https://doi.org/10.1021/acsami.0c08002.
|
| [51] |
T. H. Cho, M. Tanaka, H. Onishi, et al., “Battery Performances and Thermal Stability of Polyacrylonitrile Nano-Fiber-Based Nonwoven Separators for Li-Ion Battery,” Journal of Power Sources 181 (2008): 155-160, https://doi.org/10.1016/j.jpowsour.2008.03.010.
|
| [52] |
Y. Liang, L. Ji, B. Guo, et al., “Preparation and Electrochemical Characterization of Ionic-Conducting Lithium Lanthanum Titanate Oxide/Polyacrylonitrile Submicron Composite Fiber-Based Lithium-Ion Battery Separators,” Journal of Power Sources 196 (2011): 436-441, https://doi.org/10.1016/j.jpowsour.2010.06.088.
|
| [53] |
R. Rohan, K. Pareek, Z. Chen, and H. Cheng, “A Pre-Lithiated Phloroglucinol Based 3D Porous Framework as a Single Ion Conducting Electrolyte for Lithium Ion Batteries,” RSC Advances 6 (2016): 53140-53147, https://doi.org/10.1039/C6RA09215B.
|
| [54] |
M. Hamrahjoo, S. Hadad, E. Dehghani, M. Salami-Kalajahi, and H. Roghani-Mamaqani, “Poly(Poly(Ethylene Glycol) Methyl Ether Methacrylate-co-Acrylonitrile) Gel Polymer Electrolytes for High Performance Lithium Ion Batteries: Comparing Controlled and Conventional Radical Polymerization,” European Polymer Journal 173 (2022): 111276, https://doi.org/10.1016/j.eurpolymj.2022.111276.
|
| [55] |
M. Rayung, M. M. Aung, A. Ahmad, M. S. Su'ait, L. C. Abdullah, and S. N. Ain Md Jamil, “Characteristics of Ionically Conducting Jatropha Oil-Based Polyurethane Acrylate Gel Electrolyte Doped With Potassium Iodide,” Materials Chemistry and Physics 222 (2019): 110-117, https://doi.org/10.1016/j.matchemphys.2018.10.009.
|
| [56] |
K. L. Chai, M. M. Aung, I. M. Noor, H. N. Lim, and L. C. Abdullah, “Observation of Ionic Conductivity on PUA-TBAI-I2 Gel Polymer Electrolyte,” Scientific Reports 12, no. 1 (2022): 124, https://doi.org/10.1038/s41598-021-03965-7.
|
| [57] |
H. Zhou, R. Zhao, Y. Xiao, et al., “Quantum Mechanical Insight Into the Li-Ion Conduction Mechanism for Solid Polymer Electrolytes,” Journal of Polymer Science 58, no. 24 (2020): 3480-3487, https://doi.org/10.1002/pol.20200686.
|
| [58] |
M. Petrowsky and R. Frech, “Temperature Dependence of Ion Transport: The Compensated Arrhenius Equation,” Journal of Physical Chemistry B 113, no. 17 (2009): 5996-6000, https://doi.org/10.1021/jp810095g.
|
| [59] |
J. Zheng, L. Schkeryantz, G. Gourdin, L. Qin, and Y. Wu, “Single Potassium-Ion Conducting Polymer Electrolytes: Preparation, Ionic Conductivities, and Electrochemical Stability,” ACS Applied Energy Materials 4 (2021): 4156-4164, https://doi.org/10.1021/acsaem.1c00483.
|
| [60] |
Y. Wang, Z. Wang, Y. Chen, et al., “Hyperporous Sponge Interconnected by Hierarchical Carbon Nanotubes as a High-Performance Potassium-Ion Battery Anode,” Advanced Materials 30, no. 32 (2018): 1802074, https://doi.org/10.1002/adma.201802074.
|
| [61] |
R. C. Cui, B. Xu, H. J. Dong, C. C. Yang, and Q. Jiang, “N/O Dual-Doped Environment-Friendly Hard Carbon as Advanced Anode for Potassium-Ion Batteries,” Advanced Science 7, no. 5 (2020): 1902547, https://doi.org/10.1002/advs.201902547.
|
| [62] |
S. Chong, Y. Chen, Y. Zheng, et al., “Potassium Ferrous Ferricyanide Nanoparticles as a High Capacity and Ultralong Life Cathode Material for Nonaqueous Potassium-Ion Batteries,” Journal of Materials Chemistry A 5 (2017): 22465-22471, https://doi.org/10.1039/C7TA08139A.
|
| [63] |
J. Zhao, X. Zou, Y. Zhu, Y. Xu, and C. Wang, “Electrochemical Intercalation of Potassium Into Graphite,” Advanced Functional Materials 26 (2016): 8103-8110, https://doi.org/10.1002/adfm.201602248.
|
| [64] |
Z. Xiao, B. Zhou, J. Wang, et al., “PEO-Based Electrolytes Blended With Star Polymers With Precisely Imprinted Polymeric Pseudo-Crown Ether Cavities for Alkali Metal Ion Batteries,” Journal of Membrane Science 576 (2019): 182-189, https://doi.org/10.1016/j.memsci.2019.01.051.
|
| [65] |
J. J. Yuan, C. C. Sun, L. F. Fang, et al., “A Lithiated Gel Polymer Electrolyte With Superior Interfacial Performance for Safe and Long-Life Lithium Metal Battery,” Journal of Energy Chemistry 55 (2021): 313-322, https://doi.org/10.1016/j.jechem.2020.06.052.
|
| [66] |
P. Zhu, C. Yan, M. Dirican, et al., “Li0.33La0.557TiO3 Ceramic Nanofiber-Enhanced Polyethylene Oxide-Based Composite Polymer Electrolytes for all-Solid-State Lithium Batteries,” Journal of Materials Chemistry A 6 (2018): 4279-4285, https://doi.org/10.1039/C7TA10517G.
|
| [67] |
M. Jing, H. Yang, H. Chong Han, et al., “Synergistic Enhancement Effects of LLZO Fibers and Interfacial Modification for Polymer Solid Electrolyte on the Ambient-Temperature Electrochemical Performances of Solid-State Battery,” Journal of the Electrochemical Society 166 (2019): A3019-A3027, https://doi.org/10.1149/2.1171913jes.
|
| [68] |
Z. Wan, D. Lei, W. Yang, et al., “Low Resistance-Integrated All-Solid-State Battery Achieved by Li7La3Zr2O12 Nanowire Upgrading Polyethylene Oxide (PEO) Composite Electrolyte and PEO Cathode Binder,” Advanced Functional Materials 29 (2019): 1805301, https://doi.org/10.1002/adfm.201805301.
|
| [69] |
J. Zhang, S. Wang, D. Han, M. Xiao, L. Sun, and Y. Meng, “Lithium (4-Styrenesulfonyl)(Trifluoromethanesulfonyl) Imide Based Single-Ion Polymer Electrolyte With Superior Battery Performance,” Energy Storage Materials 24 (2020): 579-587, https://doi.org/10.1016/j.ensm.2019.06.029.
|
RIGHTS & PERMISSIONS
2025 The Author(s). Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.