Ultrastable Gel Polymer Lithium Metal Batteries With Novel Nitro-Substituted Hexafluoride SEI-Forming Additive

Shuoning Zhang , Zichen Wang , Yinuo Yu , Shengyu Qin , Yunxiao Ren , Jiajun Chen , Jiale Liu , Lanying Zhang , Wei Hu , Huai Yang

Battery Energy ›› 2025, Vol. 4 ›› Issue (5) : e20240081

PDF
Battery Energy ›› 2025, Vol. 4 ›› Issue (5) : e20240081 DOI: 10.1002/bte2.20240081
RESEARCH ARTICLE

Ultrastable Gel Polymer Lithium Metal Batteries With Novel Nitro-Substituted Hexafluoride SEI-Forming Additive

Author information +
History +
PDF

Abstract

Employing functional additives can facilitate the formation of stable solid electrolyte interphase (SEI), which has emerged as a promising strategy to improve the electrochemical properties of lithium metal batteries (LMBs). Typical SEI containing inorganic components, such as lithium fluoride (LiF) and lithium nitride (LiNxOy and Li3N), have been confirmed to construct an ideal SEI for LMBs. Here, we designed and synthesized a novel molecule named BTFN to act as an SEI-forming additive containing fluorine and nitro groups. The strong electron-withdrawing effect greatly reduces the lowest unoccupied molecular orbital (LUMO) energy, facilitating its preferential decomposition during the SEI-forming process. An SEI with rich LiF, LiNxOy, and Li3N forms after its preferential and complete decomposition, greatly enhancing stabilization and uniformity. The lifespan of symmetric LMBs with BTFN significantly increases more than 12 times under the same conditions; the Li/SPE/LFP full batteries cycle more than four times the contrast batteries with a capacity retention of 99.7%. This work provides some experiences and opinions for exploring complex SEI-forming additives.

Keywords

electrolyte additives / lithium metal batteries / solid electrolyte interphase / solid polymer electrolytes

Cite this article

Download citation ▾
Shuoning Zhang, Zichen Wang, Yinuo Yu, Shengyu Qin, Yunxiao Ren, Jiajun Chen, Jiale Liu, Lanying Zhang, Wei Hu, Huai Yang. Ultrastable Gel Polymer Lithium Metal Batteries With Novel Nitro-Substituted Hexafluoride SEI-Forming Additive. Battery Energy, 2025, 4(5): e20240081 DOI:10.1002/bte2.20240081

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. Manthiram, X. Yu, and S. Wang, “Lithium Battery Chemistries Enabled by Solid-State Electrolytes,” Nature Reviews Materials 2, no. 4 (2017): 16103.

[2]

Q. Zhao, S. Stalin, C.-Z. Zhao, and L. A. Archer, “Designing Solid-State Electrolytes for Safe, Energy-Dense Batteries,” Nature Reviews Materials 5, no. 3 (2020): 229-252.

[3]

W. Zhang, V. Koverga, S. Liu, et al., “Single-Phase Local-High-Concentration Solid Polymer Electrolytes for Lithium-Metal Batteries,” Nature Energy 9 (2024): 386-400.

[4]

P. Albertus, S. Babinec, S. Litzelman, and A. Newman, “Status and Challenges in Enabling the Lithium Metal Electrode for High-Energy and Low-Cost Rechargeable Batteries,” Nature Energy 3, no. 1 (2017): 16-21.

[5]

R. Schmuch, R. Wagner, G. Hörpel, T. Placke, and M. Winter, “Performance and Cost of Materials for Lithium-Based Rechargeable Automotive Batteries,” Nature Energy 3, no. 4 (2018): 267-278.

[6]

L. Ye and X. Li, “A Dynamic Stability Design Strategy for Lithium Metal Solid State Batteries,” Nature 593, no. 7858 (2021): 218-222.

[7]

Y. Gao, Z. Yan, J. L. Gray, et al., “Polymer-Inorganic Solid-Electrolyte Interphase for Stable Lithium Metal Batteries Under Lean Electrolyte Conditions,” Nature Materials 18, no. 4 (2019): 384-389.

[8]

S. Qin, Y. Cao, J. Zhang, et al., “Polymer Dispersed Ionic Liquid Electrolytes With High Ionic Conductivity for Ultrastable Solid-State Lithium Batteries,” Carbon Energy 5, no. 5 (2023): e316, https://doi.org/10.1002/cey2.316.

[9]

S. Qin, Y. Yu, J. Zhang, et al., “Separator-Free In Situ Dual-Curing Solid Polymer Electrolytes With Enhanced Interfacial Contact for Achieving Ultrastable Lithium-Metal Batteries,” Advanced Energy Materials 13, no. 34 (2023): 2301470, https://doi.org/10.1002/aenm.202301470.

[10]

S. Qin, Z. Wang, Y. Ren, et al., “A Meltblown Cloth Reinforced Partially Fluorinated Solid Polymer Electrolyte for Ultrastable Lithium Metal Batteries,” Nano Energy 119 (2024): 109075.

[11]

J. Lee, S. Byun, H. Lee, et al., “Digital-Twin-Driven Structural and Electrochemical Analysis of Li+ Single-Ion Conducting Polymer Electrolyte for All-Solid-State Batteries,” Battery Energy 2, no. 2 (2023): 20220061, https://doi.org/10.1002/bte2.20220061.

[12]

Z. Liu, S. Zhang, Q. Zhou, et al., “Insights Into Quasi Solid-State Polymer Electrolyte: The Influence of Succinonitrile on Polyvinylene Carbonate Electrolyte in View of Electrochemical Applications,” Battery Energy 2, no. 3 (2023): 20220049, https://doi.org/10.1002/bte2.20220049.

[13]

Q. Zhao, S. Stalin, and L. A. Archer, “Stabilizing Metal Battery Anodes Through the Design of Solid Electrolyte Interphases,” Joule 5, no. 5 (2021): 1119-1142.

[14]

S. Gao, F. Sun, N. Liu, H. Yang, and P.-F. Cao, “Ionic Conductive Polymers as Artificial Solid Electrolyte Interphase Films in Li Metal Batteries—A Review,” Materials Today 40 (2020): 140-159.

[15]

P. Zhai, L. Liu, X. Gu, T. Wang, and Y. Gong, “Interface Engineering for Lithium Metal Anodes in Liquid Electrolyte,” Advanced Energy Materials 10, no. 34 (2020): 2001257, https://doi.org/10.1002/aenm.202001257.

[16]

S. K. Heiskanen, J. Kim, and B. L. Lucht, “Generation and Evolution of the Solid Electrolyte Interphase of Lithium-Ion Batteries,” Joule 3, no. 10 (2019): 2322-2333.

[17]

H. Wu, H. Jia, C. Wang, J. G. Zhang, and W. Xu, “Recent Progress in Understanding Solid Electrolyte Interphase on Lithium Metal Anodes,” Advanced Energy Materials 11, no. 5 (2020): 2003092, https://doi.org/10.1002/aenm.202003092.

[18]

A. Wang, S. Kadam, H. Li, S. Shi, and Y. Qi, “Review on Modeling of the Anode Solid Electrolyte Interphase (SEI) for Lithium-Ion Batteries,” npj Computational Materials 4, no. 1 (2018): 15.

[19]

B. Li, Y. Chao, M. Li, et al., “A Review of Solid Electrolyte Interphase (SEI) and Dendrite Formation in Lithium Batteries,” Electrochemical Energy Reviews 6, no. 1 (2023): 7.

[20]

S. J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, and D. L. Wood, “The State of Understanding of the Lithium-Ion-Battery Graphite Solid Electrolyte Interphase (SEI) and Its Relationship to Formation Cycling,” Carbon 105 (2016): 52-76.

[21]

W. Liu, P. Liu, and D. Mitlin, “Review of Emerging Concepts in SEI Analysis and Artificial SEI Membranes for Lithium, Sodium, and Potassium Metal Battery Anodes,” Advanced Energy Materials 10, no. 43 (2020): 2002297, https://doi.org/10.1002/aenm.202002297.

[22]

B. Wu, C. Chen, L. H. J. Raijmakers, et al., “Li-Growth and SEI Engineering for Anode-Free Li-Metal Rechargeable Batteries: A Review of Current Advances,” Energy Storage Materials 57 (2023): 508-539.

[23]

H. Adenusi, G. A. Chass, S. Passerini, K. V. Tian, and G. Chen, “Lithium Batteries and the Solid Electrolyte Interphase (SEI)—Progress and Outlook,” Advanced Energy Materials 13, no. 10 (2023): 2203307, https://doi.org/10.1002/aenm.202203307.

[24]

H. Cheng, Q. Sun, L. Li, et al., “Emerging Era of Electrolyte Solvation Structure and Interfacial Model in Batteries,” ACS Energy Letters 7, no. 1 (2022): 490-513.

[25]

P. Zou, Y. Sui, H. Zhan, et al., “Polymorph Evolution Mechanisms and Regulation Strategies of Lithium Metal Anode Under Multiphysical Fields,” Chemical Reviews 121, no. 10 (2021): 5986-6056.

[26]

K. Wang, W. Ni, L. Wang, et al., “Lithium Nitrate Regulated Carbonate Electrolytes for Practical Li-Metal Batteries: Mechanisms, Principles and Strategies,” Journal of Energy Chemistry 77 (2023): 581-600.

[27]

J. Tan, J. Matz, P. Dong, J. Shen, and M. Ye, “A Growing Appreciation for the Role of LiF in the Solid Electrolyte Interphase,” Advanced Energy Materials 11, no. 16 (2021): 2100046, https://doi.org/10.1002/aenm.202100046.

[28]

T. Li, X.-Q. Zhang, P. Shi, and Q. Zhang, “Fluorinated Solid-Electrolyte Interphase in High-Voltage Lithium Metal Batteries,” Joule 3, no. 11 (2019): 2647-2661.

[29]

J. Zhou, B. Hao, M. Peng, et al., “Nonafluorobutane-1-Sulfonic Acid Induced Local High Concentration Additive Interface for Robust SEI Formation of High-Voltage (5 V-Class) Lithium Metal Batteries,” Advanced Energy Materials 13, no. 24 (2023): 2204174, https://doi.org/10.1002/aenm.202204174.

[30]

Y. Wei, T. H. Liu, W. Zhou, et al., “Enabling All-Solid-State Li Metal Batteries Operated at 30°C by Molecular Regulation of Polymer Electrolyte,” Advanced Energy Materials 13, no. 10 (2023): 2203547, https://doi.org/10.1002/aenm.202203547.

[31]

J. Zhang, X. Yue, Z. Wu, et al., “A LiF-Rich Solid Electrolyte Interphase in a Routine Carbonate Electrolyte by Tuning the Interfacial Chemistry Behavior of LiPF6 for Stable Li Metal Anodes,” Nano Letters 23, no. 20 (2023): 9609-9617.

[32]

X. Zhang, M. Zhang, J. Wu, et al., “Lewis Acid Fluorine-Donating Additive Enables an Excellent Semi-Solid-State Electrolyte for Ultra-Stable Lithium Metal Batteries,” Nano Energy 115 (2023): 108700.

[33]

L. Tang, B. Chen, Z. Zhang, et al., “Polyfluorinated Crosslinker-Based Solid Polymer Electrolytes for Long-Cycling 4.5 V Lithium Metal Batteries,” Nature Communications 14, no. 1 (2023): 2301.

[34]

S. Lee, K.-S. Lee, S. Kim, et al., “Design of a Lithiophilic and Electron-Blocking Interlayer for Dendrite-Free Lithium-Metal Solid-State Batteries,” Science Advance 8, no. 30 (2022): eabq0153, https://doi.org/10.1126/sciadv.abq0153.

[35]

T.-U. Wi, S. O. Park, S. J. Yeom, et al., “Revealing the Dual-Layered Solid Electrolyte Interphase on Lithium Metal Anodes via Cryogenic Electron Microscopy,” ACS Energy Letters 8, no. 5 (2023): 2193-2200.

[36]

Z. Wang, L. P. Hou, Z. Li, et al., “Highly Soluble Organic Nitrate Additives for Practical Lithium Metal Batteries,” Carbon Energy 5, no. 1 (2022): e283, https://doi.org/10.1002/cey2.283.

[37]

J. Fu, X. Ji, J. Chen, et al., “Lithium Nitrate Regulated Sulfone Electrolytes for Lithium Metal Batteries,” Angewandte Chemie International Edition 59, no. 49 (2020): 22194-22201.

[38]

M. S. Kim, Z. Zhang, J. Wang, et al., “Revealing the Multifunctions of Li3N in the Suspension Electrolyte for Lithium Metal Batteries,” ACS Nano 17, no. 3 (2023): 3168-3180.

[39]

D. Jin, C. Park, J. Han, et al., “Ethyl 2-(2-fluoroethoxy)ethyl Carbonate as a New Electrolyte Additive for High-Voltage Li-Metal Batteries,” Battery Energy 2, no. 1 (2023): 20220034, https://doi.org/10.1002/bte2.20220034.

[40]

S. Lei, Z. Zeng, S. Cheng, and J. Xie, “Fast-Charging of Lithium-Ion Batteries: A Review of Electrolyte Design Aspects,” Battery Energy 2, no. 5 (2023): 20230018, https://doi.org/10.1002/bte2.20230018.

RIGHTS & PERMISSIONS

2025 The Author(s). Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

35

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/