Nickel-Doped h-MoO3 Cathodes: A High-Performance Material for Aluminum-Ion Batteries

Paloma Almodóvar , Inmaculada Álvarez-Serrano , Irene Llorente , María Luisa López , Joaquín Chacón , Carlos Díaz-Guerra

Battery Energy ›› 2025, Vol. 4 ›› Issue (5) : e20240076

PDF
Battery Energy ›› 2025, Vol. 4 ›› Issue (5) : e20240076 DOI: 10.1002/bte2.20240076
RESEARCH ARTICLE

Nickel-Doped h-MoO3 Cathodes: A High-Performance Material for Aluminum-Ion Batteries

Author information +
History +
PDF

Abstract

This study introduces a novel method for the effective doping of hexagonal molybdenum trioxide (h-MoO3) microstructures with different contents of nickel, significantly enhancing its electrochemical performance in aluminum-ion batteries (AIBs). Ni doping does not alter the high crystallinity and phase purity of the pristine oxide but modifies its defective structure and electronic properties. Electrochemical tests, including cyclic voltammograms and charge-discharge cycling, showed improvements in capacity and stability for Ni-doped samples as compared with undoped ones. Moreover, the incorporation of Ni was found to enhance the structural integrity and electrochemical stability of h-MoO3, preventing the formation of intermediate phases during cycling and reducing resistance at the electrode-electrolyte interface. The existence of an optimal Ni doping of about 1 at% is evidenced. Samples with this Ni content attain a stabilized specific capacity of 230 mAh g−1 over 100 cycles, doubling that reported in previous works for h-MoO3 composites with carbon nanotubes. Nickel-doped h-MoO3 shows exciting potential for advanced AIB applications, paving the way for further energy storage technology advancements.

Keywords

aluminum-ion batteries / hexagonal molybdenum oxide / nickel-doped / urea-based electrolytes

Cite this article

Download citation ▾
Paloma Almodóvar, Inmaculada Álvarez-Serrano, Irene Llorente, María Luisa López, Joaquín Chacón, Carlos Díaz-Guerra. Nickel-Doped h-MoO3 Cathodes: A High-Performance Material for Aluminum-Ion Batteries. Battery Energy, 2025, 4(5): e20240076 DOI:10.1002/bte2.20240076

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. K. Das, S. Mahapatra, and H. Lahan, “Aluminium-Ion Batteries: Developments and Challenges,” Journal of Materials Chemistry A 5 (2017): 6347-6367, https://doi.org/10.1039/c7ta00228a.

[2]

G. A. Elia, K. V. Kravchyk, M. V. Kovalenko, J. Chacón, A. Holland, and R. G. A. Wills, “An Overview and Prospective on Al and Al-Ion Battery Technologies,” Journal of Power Sources 481 (2021): 228870, https://doi.org/10.1016/j.jpowsour.2020.228870.

[3]

F. Jach, M. Wassner, M. Bamberg, E. Brendler, and G. Frisch, “A Low-Cost Al-Graphite Battery With Urea and Acetamide-Based Electrolytes,” ChemElectroChem 8 (2021): 1988-1992, https://doi.org/10.1002/celc.202100183.

[4]

P. Almodóvar, D. Giraldo, C. Díaz-Guerra, et al., “h-MoO3/AlCl3-Urea/Al: High Performance and Low-Cost Rechargeable Al-Ion Battery,” Journal of Power Sources 516 (2021): 230656, https://doi.org/10.1016/j.jpowsour.2021.230656.

[5]

P. Almodóvar, M. L. López, J. Ramírez-Castellanos, et al., “Synthesis, Characterization and Electrochemical Assessment of Hexagonal Molybdenum Trioxide (h-MoO3) Micro-Composites With Graphite, Graphene and Graphene Oxide for Lithium Ion Batteries,” Electrochimica Acta 365 (2021): 137355, https://doi.org/10.1016/j.electacta.2020.137355.

[6]

C. Zhang, L. Wu, M. de Perrot, and X. Zhao, “Carbon Nanotubes: A Summary of Beneficial and Dangerous Aspects of an Increasingly Popular Group of Nanomaterials,” Frontiers in Oncology 11 (2021): 693814, https://doi.org/10.3389/fonc.2021.693814.

[7]

K. Kumar and R. Kundu, “Doping Engineering in Electrode Material for Boosting the Performance of Sodium Ion Batteries,” ACS Applied Materials & Interfaces 16 (2024): 37346-37362, https://doi.org/10.1021/acsami.4c06305.

[8]

H. Usui, Y. Domi, T. H. Nguyen, Y. Sadamori, T. Tanaka, and H. Sakaguchi, “Fe-Nb Co-Doped Rutile TiO2 for Anode Materials of Li-Ion Batteries,” ACS Applied Engineering Materials 1 (2023): 994-1000, https://doi.org/10.1021/acsaenm.2c00262.

[9]

H. Qian, H. Ren, Y. Zhang, et al., “Surface Doping vs. Bulk Doping of Cathode Materials for Lithium-Ion Batteries: A Review,” Electrochemical Energy Reviews 5 (2022): 2, https://doi.org/10.1007/s41918-022-00155-5.

[10]

S. Chen, Y. Kong, C. Tang, et al., “Doping Regulation Stabilizing δ-MnO2 Cathode for High-Performance Aqueous Aluminium-Ion Batteries,” Small 20 (2024): e2312229, https://doi.org/10.1002/smll.202312229.

[11]

Z. Cui, X. Li, X. Bai, X. Ren, and X. Ou, “A Comprehensive Review of Foreign-Ion Doping and Recent Achievements for Nickel-Rich Cathode Materials,” Energy Storage Materials 57 (2023): 14-43, https://doi.org/10.1016/j.ensm.2023.02.003.

[12]

Y. Li, M. Ma, X. Hua, et al., “Enhanced Energy Storage Performance of Iron Molybdate by Ni Doping,” Materials Chemistry and Physics 261 (2021): 124211, https://doi.org/10.1016/j.matchemphys.2020.124211.

[13]

Y. Yan, W. Peng, B. Yuan, et al., “Hexagonal MoO3 Anode With Extremely High Capacity and Cyclability for Lithium-Ion Battery: A Combined Theoretical and Experimental Study,” ACS Applied Materials & Interfaces 16 (2024): 37840-37852, https://doi.org/10.1021/acsami.4c03982.

[14]

M. Malik, K. L. Ng, and G. Azimi, “Physicochemical Characterization of AlCl3-Urea Ionic Liquid Analogs: Speciation, Conductivity, and Electrochemical Stability,” Electrochimica Acta 354 (2020): 136708, https://doi.org/10.1016/j.electacta.2020.136708.

[15]

H. J. Lunk, H. Hartl, M. A. Hartl, et al., ““Hexagonal Molybdenum Trioxide”—Known for 100 Years and Still a Fount of New Discoveries,” Inorganic Chemistry 49 (2010): 9400-9408, https://doi.org/10.1021/ic101103g.

[16]

P. Ren, X. Ren, J. Xu, et al., “Excellent Adsorption Property and Mechanism of Oxygen Vacancies-Assisted Hexagonal MoO3 Nanosheets for Methylene Blue and Rhodamine b Dyes,” Applied Surface Science 597 (2022): 153699, https://doi.org/10.1016/j.apsusc.2022.153699.

[17]

A. Chithambararaj and A. C. Bose, “Investigation on Structural, Thermal, Optical and Sensing Properties of Meta-Stable Hexagonal MoO3 Nanocrystals of One Dimensional Structure,” Beilstein Journal of Nanotechnology 2 (2011): 585-592, https://doi.org/10.3762/bjnano.2.62.

[18]

Z. Fu, J. Hu, W. Hu, S. Yang, and Y. Luo, “Quantitative Analysis of Ni2+/Ni3+ in Li[NixMnyCoz]O2 Cathode Materials: Non-Linear Least-Squares Fitting of XPS Spectra,” Applied Surface Science 441 (2018): 1048-1056, https://doi.org/10.1016/j.apsusc.2018.02.114.

[19]

V. R. Sreelakshmi, A. Anu Kaliani, and M. Jithin, “Photochromic and Hydrophilic Self-Cleaning Nature of MoO3 Thin Films,” Journal of Materials Science: Materials in Electronics 33 (2022): 9525-9537, https://doi.org/10.1007/s10854-021-07504-y.

[20]

W. Brockner, C. Ehrhardt, and M. Gjikaj, “Thermal Decomposition of Nickel Nitrate Hexahydrate, Ni(NO3)2·6H2O, in Comparison to Co(NO3)2·6H2O and Ca(NO3)2·4H2O,” Thermochimica Acta 456 (2007): 64-68, https://doi.org/10.1016/j.tca.2007.01.031.

[21]

V. V. Atuchin, T. A. Gavrilova, V. G. Kostrovsky, L. D. Pokrovsky, and I. B. Troitskaia, “Morphology and Structure of Hexagonal MoO3 Nanorods,” Inorganic Materials 44 (2008): 622-627, https://doi.org/10.1134/S0020168508060149.

[22]

J. V. B. Moura, J. V. Silveira, J. G. da Silva Filho, A. G. Souza Filho, C. Luz-Lima, and P. T. C. Freire, “Temperature Induced Phase Transition in h-MoO3: Stability Loss Mechanism Uncovered by Raman Spectroscopy and DFT Calculations,” Vibrational Spectroscopy 98 (2018): 98-104, https://doi.org/10.1016/j.vibspec.2018.07.008.

[23]

M. M. Y. A. Alsaif, M. R. Field, T. Daeneke, et al., “Exfoliation Solvent Dependent Plasmon Resonances in Two-Dimensional Sub-Stoichiometric Molybdenum Oxide Nanoflakes,” ACS Applied Materials & Interfaces 8 (2016): 3482-3493, https://doi.org/10.1021/acsami.5b12076.

[24]

C. Zhu, Q. Xu, L. Ji, Y. Ren, and M. Fang, “Room-Temperature Synthesis of Amorphous Molybdenum Oxide Nanodots With Tunable Localized Surface Plasmon Resonances,” Chemistry—An Asian Journal 12 (2017): 2980-2984, https://doi.org/10.1002/asia.201701170.

[25]

C. Cheng, A. Wang, M. Humayun, and C. Wang, “Recent Advances of Oxygen Vacancies in MoO3: Preparation and Roles,” Chemical Engineering Journal 498 (2024): 155246, https://doi.org/10.1016/j.cej.2024.155246.

[26]

S. Z. Noby, A. Fakharuddin, S. Schupp, et al., “Oxygen Vacancies in Oxidized and Reduced Vertically Aligned α-MoO3 Nanoblades,” Materials Advances 3 (2022): 3571-3581, https://doi.org/10.1039/d1ma00678a.

[27]

N. V. Vasileva, P. A. Gerus, V. O. Sokolov, and V. G. Plotnichenko, “Optical Absorption of Ni2+ and Ni3+ Ions in Gadolinium Gallium Garnet Epitaxial Films,” Journal of Physics D: Applied Physics 45 (2012): 485301, https://doi.org/10.1088/0022-3727/45/48/485301.

[28]

B. V. R. Chowdari, Y. Ravisekhar, and C. Muralikrishna, “Radiation Damage of Ni2+-Doped NH4MgPO4·6H2O,” Physica Status Solidi (b) 109 (1982): 315-324, https://doi.org/10.1002/pssb.2221090134.

[29]

K. Inzani, T. Grande, F. Vullum-Bruer, and S. M. Selbach, “A van der Waals Density Functional Study of MoO3 and Its Oxygen,” Journal of Physical Chemistry C 120 (2016): 8959-8968, https://doi.org/10.1021/acs.jpcc.6b00585.

[30]

M. T. Greiner and Z. H. Lu, “Thin-Film Metal Oxides in Organic Semiconductor Devices: Their Electronic Structures, Work Functions and Interfaces,” NPG Asia Materials 5 (2013): e55, https://doi.org/10.1038/am.2013.29.

[31]

Q. Liu, Y. Wu, J. Zhang, et al., “Plasmonic MoO3−x Nanosheets With Tunable Oxygen Vacancies as Efficient Visible Light Responsive Photocatalyst,” Applied Surface Science 490 (2019): 395-402, https://doi.org/10.1016/j.apsusc.2019.06.099.

[32]

H. H. Afify, S. A. Hassan, B. Anis, and A. Abouelsayed, “Effect of UV Light Illumination in Humid Air on the Optical and Electronic Properties of the Orthorhombic α-MoO3 and Monoclinic β-MoO3,” Journal of Applied Physics 132 (2022): 075102, https://doi.org/10.1063/5.0095295.

[33]

W. A. Abu-raia, D. A. Aloraini, S. A. El-Khateeb, and A. Saeed, “Ni Ions Doped Oxyflourophosphate Glass as a Triple Ultraviolet-Visible-Near Infrared Broad Bandpass Optical Filter,” Scientific Reports 12 (2022): 16024, https://doi.org/10.1038/s41598-022-20300-w.

[34]

M. Angell, C. J. Pan, Y. Rong, et al., “High Coulombic Efficiency Aluminum-Ion Battery Using an AlCl3-Urea Ionic Liquid Analog Electrolyte,” Proceedings of the National Academy of Sciences 114 (2017): 834-839, https://doi.org/10.1073/pnas.1619795114.

[35]

H. Jiao, C. Wang, J. Tu, D. Tian, and S. Jiao, “A Rechargeable Al-Ion Battery: Al/Molten AlCl3-Urea/Graphite,” Chemical Communications 53 (2017): 2331-2334, https://doi.org/10.1039/c6cc09825h.

[36]

P. Almodóvar, N. Rey-Raap, S. L. Flores-López, et al., “Enhancing Aluminium-Ion Battery Performance With Carbon Xerogel Cathodes,” Batteries & Supercaps 7 (2024): e202400114, https://doi.org/10.1002/batt.202400114.

[37]

Q. Tang, L. Wang, K. Zhu, Z. Shan, and X. Qin, “Synthesis and Electrochemical Properties of h-MoO3/Graphene Composite,” Materials Letters 100 (2013): 127-129, https://doi.org/10.1016/j.matlet.2013.03.005.

RIGHTS & PERMISSIONS

2025 The Author(s). Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

29

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/