Transition Metal Molybdates Emerging Materials for High-Performance Supercapacitors: A Machine Learning Analysis

Digambar S. Sawant , Shrinivas B. Kulkarni , Deepak P. Dubal , Gaurav M. Lohar

Battery Energy ›› 2025, Vol. 4 ›› Issue (3) : e20240073

PDF
Battery Energy ›› 2025, Vol. 4 ›› Issue (3) : e20240073 DOI: 10.1002/bte2.20240073
REVIEW

Transition Metal Molybdates Emerging Materials for High-Performance Supercapacitors: A Machine Learning Analysis

Author information +
History +
PDF

Abstract

Transition metal molybdates (AMoO4 where A = Ni, Co, Mn, Fe, and Zn) have attracted much attention as promising electrode materials for energy storage devices due to their multi-electron redox capability, higher electrical conductivity, good chemical and thermal stability, and stable crystal structure to get superior electrochemical performance. Transition metal molybdates and their graphene-based composites possess multidimensional morphology for supercapacitors. The morphology-dependent supercapacitor behavior has been reviewed in the present article. The formation mechanism of AMoO4 nanostructures in the form of 1D, 2D, and 3D has been identified and respective supercapacitor behavior is outlined. The density functional theory based on the calculated electronic properties of AMoO4 has been discussed. Additionally, the application of machine learning techniques in predicting and analyzing the relationships of AMoO4 has been discussed for the first time. By leveraging ML algorithms, we identify key parameters influencing their energy storage capabilities, providing insights into the rational design of molybdate-based composites. Integrating experimental results with ML-driven optimization offers a novel pathway for accelerating the development of next-generation energy storage devices. In conclusion, future perspectives and challenges have been discussed.

Keywords

graphene / machine learning / molybdates / supercapacitor

Cite this article

Download citation ▾
Digambar S. Sawant, Shrinivas B. Kulkarni, Deepak P. Dubal, Gaurav M. Lohar. Transition Metal Molybdates Emerging Materials for High-Performance Supercapacitors: A Machine Learning Analysis. Battery Energy, 2025, 4(3): e20240073 DOI:10.1002/bte2.20240073

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

T. Wang, H. C. Chen, F. Yu, X. S. Zhao, and H. Wang, “Boosting the Cycling Stability of Transition Metal Compounds-Based Supercapacitors,” Energy Storage Materials 16 (2019): 545-573.

[2]

P. Simon and Y. Gogotsi, “Materials for Electrochemical Capacitors,” Nature Materials 7 (2008): 845-854.

[3]

X. Feng, J. Ning, D. Wang, et al., “Heterostructure Arrays of NiMoO4 Nanoflakes on N-Doping of Graphene for High-Performance Asymmetric Supercapacitors,” Journal of Alloys and Compounds 816 (2020): 152625, https://doi.org/10.1016/J.JALLCOM.2019.152625.

[4]

J. Yesuraj, O. Padmaraj, and S. A. Suthanthiraraj, “Synthesis, Characterization, and Improvement of Supercapacitor Properties of NiMoO4 Nanocrystals With Polyaniline,” Journal of Inorganic and Organometallic Polymers and Materials 30 (2020): 310-321.

[5]

J. X. Cui, W. S. Wang, L. Zhen, W. Z. Shao, and Z. L. Chen, “Formation of FeMoO4 Hollow Microspheres via a Chemical Conversion-Induced Ostwald Ripening Process,” CrystEngComm 14 (2012): 7025.

[6]

C. Liu, F. Li, L.-P. Ma, and H. M. Cheng, “Advanced Materials for Energy Storage,” Advanced Materials 22 (2010): E28.

[7]

G. Wang, L. Zhang, and J. Zhang, “A Review of Electrode Materials for Electrochemical Supercapacitors,” Chemical Society Reviews 41 (2012): 797-828.

[8]

O. C. Pore, A. V. Fulari, N. B. Velha, et al., “Hydrothermally Synthesized Urchinlike NiO Nanostructures for Supercapacitor and Nonenzymatic Glucose Biosensing Application,” Materials Science in Semiconductor Processing 134 (2021): 105980.

[9]

O. C. Pore, A. V. Fulari, R. K. Kamble, et al., “Hydrothermally Synthesized Co3O4 Microflakes for Supercapacitor and Non-Enzymatic Glucose Sensor,” Journal of Materials Science: Materials in Electronics 32 (2021): 20742.

[10]

M. M. Rahman, A. O. Oni, E. Gemechu, and A. Kumar, “Assessment of Energy Storage Technologies: A Review,” Energy Conversion and Management 223 (2020): 113295.

[11]

D. Dubal and O. Ayyad, … V. R.-C. S., undefined 2015, pubs.rsc.org n.d.

[12]

H. D. Abruña, Y. Kiya, and J. C. Henderson, “Batteries and Electrochemical Capacitors,” Physics Today 61 (2008): 43-47.

[13]

P. Gómez-Romero, O. Ayyad, J. Suárez-Guevara, and D. Muñoz-Rojas, “Hybrid Organic-Inorganic Materials: From Child's Play to Energy Applications,” Journal of Solid State Electrochemistry 14 (2010): 1939-1945.

[14]

M. Sato and Y. Ando, “Topological Superconductors: A Review,” Reports on Progress in Physics 80 (2017): 076501, https://doi.org/10.1088/1361-6633/AA6AC7.

[15]

S. Vazquez, S. Lukic, E. Galvan, L. G. Franquelo, J. M. Carrasco, and J. I. Leon, IECON Proceedings (Industrial Electronics Conference) 2011, 4636.

[16]

A. M. Howlader and T. Senjyu, “A Comprehensive Review of Low Voltage Ride Through Capability Strategies for the Wind Energy Conversion Systems,” Renewable and Sustainable Energy Reviews 56 (2016): 643-658.

[17]

O. C. Pore, A. V. Fulari, R. V. Shejwal, V. J. Fulari, and G. M. Lohar, “Review on Recent Progress in Hydrothermally Synthesized MCo2O4/rGO Composite for Energy Storage Devices,” Chemical Engineering Journal 426 (2021): 131544.

[18]

X. Liu and K. Li, “Energy Storage Devices in Electrified Railway Systems: A Review,” Transportation Safety and Environment 2 (2020): 183-201.

[19]

N. R. Chodankar, H. D. Pham, A. K. Nanjundan, et al., “True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors,” Small 16 (2020): 2002806.

[20]

R. Chen, M. Yu, R. P. Sahu, I. K. Puri, and I. Zhitomirsky, “The Development of Pseudocapacitor Electrodes and Devices With High Active Mass Loading,” Advanced Energy Materials 10 (2020): 1903848.

[21]

S. Fleischmann, J. B. Mitchell, R. Wang, et al., “Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials,” Chemical Reviews 120 (2020): 6738-6782.

[22]

Y. Sun, X. Hu, W. Luo, and Y. Huang, “Self-Assembled Hierarchical MoO2/Graphene Nanoarchitectures and Their Application as a High-Performance Anode Material for Lithium-Ion Batteries,” ACS Nano 5 (2011): 7100-7107.

[23]

Y. Li, S. Tan, J. Jiang, Z. Huang, and X. Tan, “Room-Temperature Synthesis, Growth Mechanism and Properties of Uniform CdMoO4 Nano-Octahedra,” CrystEngComm 13 (2011): 2649.

[24]

Z. Zhang, W. Li, T. W. Ng, W. Kang, C. S. Lee, and W. Zhang, “Iron(Ii) Molybdate (FeMoO4) Nanorods as a High-Performance Anode for Lithium Ion Batteries: Structural and Chemical Evolution Upon Cycling,” Journal of Materials Chemistry A 3 (2015): 20527-20534.

[25]

M. Ghaed-Amini, M. Bazarganipour, and M. Salavati-Niasari, “Large Scale Synthesis of Novel Flower-Like Strontium Molybdate Nanostructures via Co-Precipitation Method,” Journal of Materials Science: Materials in Electronics 26 (2015): 7452.

[26]

R. Chen, M. Yu, R. P. Sahu, I. K. Puri, and I. Zhitomirsky, “The Development of Pseudocapacitor Electrodes and Devices With High Active Mass Loading,” Advanced Energy Materials 10 (2020): 1903848.

[27]

G. S. R. Raju, E. Pavitra, Y. H. Ko, and J. S. Yu, “A Facile and Efficient Strategy for the Preparation of Stable CaMoO4 Spherulites Using Ammonium Molybdate as a Molybdenum Source and Their Excitation Induced Tunable Luminescent Properties for Optical Applications,” Journal of Materials Chemistry 22 (2012): 15562.

[28]

J. Zhang, T. Zheng, E. Alarçin, et al., “Biomedicine: Porous Electrospun Fibers With Self-Sealing Functionality: An Enabling Strategy for Trapping Biomacromolecules (Small 47/2017),” Small 13 (2017): 1700917.

[29]

L. Gurusamy, L. Karuppasamy, S. Anandan, C. H. Liu, and J. J. Wu, “Recent Advances on Metal Molybdate-Based Electrode Materials for Supercapacitor Application,” Journal of Energy Storage 79 (2024): 110122.

[30]

K. Yousefipour, R. Sarraf-Mamoory, and S. Mollayousefi, “Synthesis of Manganese Molybdate/MWCNT Nanostructure Composite With a Simple Approach for Supercapacitor Applications,” RSC Advances 12 (2022): 27868-27876.

[31]

A. A. Mohammed, P. K. Panda, A. Hota, B. C. Tripathy, and S. Basu, “Flexible Asymmetric Supercapacitor Based on Hyphaene Fruit Shell-Derived Multi-Heteroatom Doped Carbon and NiMoO4@NiCo2O4 Hybrid Structure Electrodes,” Biomass Bioenergy 179 (2023): 106981.

[32]

S. Kanthasamy, M. Subramani, S. Ramasamy, and S. Thangavelu, “Unveiling the Structure-Property Relationships of Bimetallic Nickel Molybdenum Metal Organic Framework for Pseudocapacitor Electrode Materials: A Combined Approach of Experimental and Theoretical Study,” Chemical Engineering Journal 495 (2024): 153691.

[33]

K. L. Chiu and L. Y. Lin, “Applied Potential-Dependent Performance of the Nickel Cobalt Oxysulfide Nanotube/Nickel Molybdenum Oxide Nanosheet Core-Shell Structure in Energy Storage and Oxygen Evolution,” Journal of Materials Chemistry A 7 (2019): 4626-4639.

[34]

H. Wang, Q. Hao, X. Yang, L. Lu, and X. Wang, “Graphene Oxide Doped Polyaniline for Supercapacitors,” Electrochemistry Communications 11 (2009): 1158-1161.

[35]

B. Zhao, P. Liu, Y. Jiang, et al., “Supercapacitor Performances of Thermally Reduced Graphene Oxide,” Journal of Power Sources 198 (2012): 423-427.

[36]

M. P. Down, S. J. Rowley-Neale, G. C. Smith, and C. E. Banks, “Fabrication of Graphene Oxide Supercapacitor Devices,” ACS Applied Energy Materials 1 (2018): 707-714.

[37]

S. Korkmaz and A. Kariper, “Graphene and Graphene Oxide Based Aerogels: Synthesis, Characteristics and Supercapacitor Applications,” Journal of Energy Storage 27 (2020): 101038.

[38]

Y. Baştanlar and M. Özuysal, “Introduction to Machine Learning,” Methods in Molecular Biology 1107 (2014): 105.

[39]

A. H. Fielding, Machine Learning Methods for Ecological Applications. Springer (1999).

[40]

S. Vieira, W. H. Lopez Pinaya, and A. Mechelli, Machine Learning: Methods and Applications to Brain Disorders 2020, 1.

[41]

L. D. Whittig and W. R. Allardice, Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods 2018, 331.

[42]

J. Epp, Materials Characterization Using Nondestructive Evaluation (NDE) Methods 2016, 81.

[43]

K. Kataoka, Y. Takahashi, N. Kijima, et al., “Crystal Growth and Structure Refinement of Monoclinic Li2TiO3,” Materials Research Bulletin 44 (2009): 168-172.

[44]

A. A. Belik, S. Iikubo, T. Yokosawa, et al., “Origin of the Monoclinic-to-Monoclinic Phase Transition and Evidence for the Centrosymmetric Crystal Structure of BiMnO3,” Journal of the American Chemical Society 129 (2007): 971-977.

[45]

P. Sharma, M. Minakshi, J. Whale, A. Jean-Fulcrand, and G. Garnweitner, “Effect of the Anionic Counterpart: Molybdate vs. Tungstate in Energy Storage for Pseudo-Capacitor Applications,” Nanomaterials 11 (2021): 580.

[46]

S. Dehnen and N. Rinn, Comprehensive Inorganic Chemistry III, Third Edition 2023, 1-10, 80.

[47]

K. Mukai, Y. Kishida, H. Nozaki, and K. Dohmae, “Structural Phase Transition From Rhombohedral (R3̅m) to Monoclinic (C2/m) Symmetry in Lithium Overstoichiometric Li1+δCo1−δO2−δ,” Chemistry of Materials 25 (2013): 2828-2837.

[48]

C. Calvo, “Crystal Structure of.Alpha.-Calcium Pyrophosphate,” Inorganic Chemistry 7 (1968): 1345-1351.

[49]

K. Matsuda, T. Naoi, K. Fujii, et al., “Crystal Structure of the β″ Phase in an Al-l.0mass%Mg2Si-0.4mass%Si Alloy,” Materials Science and Engineering: A 262 (1999): 232-237.

[50]

S. J. Andersen, H. W. Zandbergen, J. Jansen, C. Træholt, U. Tundal, and O. Reiso, “The Crystal Structure of the β″ Phase in Al-Mg-Si Alloys,” Acta Materialia 46 (1998): 3283-3298.

[51]

L. Jinlong, Y. Meng, K. Suzuki, and H. Miura, “Synthesis of CoMoO4 @Rgo Nanocomposites as High-Performance Supercapacitor Electrodes,” Microporous and Mesoporous Materials 242 (2017): 264-270.

[52]

S. Jayasubramaniyan, S. Balasundari, N. Naresh, et al., “Hydrothermal Synthesis of Novel Mn1/3Ni1/3Co1/3MoO4 on Reduced Graphene Oxide With a High Electrochemical Performance for Supercapacitors,” Journal of Alloys and Compounds 778 (2019): 900-912.

[53]

R. Sheng, J. Hu, X. Lu, W. Jia, J. Xie, and Y. Cao, “Solid-State Synthesis and Superior Electrochemical Performance of MnMoO4 Nanorods for Asymmetric Supercapacitor,” Ceramics International 47 (2021): 16316-16323.

[54]

F. T. Johra and W. G. Jung, “Hydrothermally Reduced Graphene Oxide as a Supercapacitor,” Applied Surface Science 357 (2015): 1911-1914.

[55]

S. Peng, L. Li, H. Bin Wu, S. Madhavi, and X. W. Lou, “Controlled Growth of NiMoO4 Nanosheet and Nanorod Arrays on Various Conductive Substrates as Advanced Electrodes for Asymmetric Supercapacitors,” Advanced Energy Materials 5 (2015): 1401172.

[56]

Z. Wang, G. Wei, K. Du, et al., “Ni Foam-Supported Carbon-Sheathed NiMoO4 Nanowires as Integrated Electrode for High-Performance Hybrid Supercapacitors,” ACS Sustainable Chemistry & Engineering 5 (2017): 5964-5971.

[57]

S. Chen, S. Chandrasekaran, S. Cui, Z. Li, G. Deng, and L. Deng, “Self-Supported NiMoO4@CoMoO4 Core/Sheath Nanowires on Conductive Substrates for All-Solid-State Asymmetric Supercapacitors,” Journal of Electroanalytical Chemistry 846 (2019): 113153.

[58]

Z. Yin, S. Zhang, Y. Chen, et al., J Mater Chem A Mater 2014, 3, 739.

[59]

Y. Zhang, H. Mei, J. Yang, et al., “New NiMoO4/CoMoO4 Composite Electrodes for Enhanced Performance Supercapacitors,” Ionics 26 (2020): 3579-3590.

[60]

B. Ramulu, S. Chandra Sekhar, G. Nagaraju, and J. S. Yu, “Rational Design and Construction of Nickel Molybdate Nanohybrid Composite for High-Performance Supercapattery,” Applied Surface Science 515 (2020): 146023.

[61]

Y. Li, S. Zhang, M. Ma, et al., “Manganese-Doped Nickel Molybdate Nanostructures for High-Performance Asymmetric Supercapacitors,” Chemical Engineering Journal 372 (2019): 452-461.

[62]

L. Lin, T. Liu, J. Liu, et al., “Facile Synthesis of Groove-Like NiMoO4 Hollow Nanorods for High-Performance Supercapacitors,” Applied Surface Science 360 (2016): 234-239.

[63]

Y. Meng, D. Yu, J. Liu, et al., “Synthesis of Transition Metal Cation Decorated Nickel Molybdate Nanoarrays on Nickel Foam and Their Applications in High-Performance Battery-Supercapacitor Hybrid Devices,” Journal of Alloys and Compounds 884 (2021): 161092.

[64]

T. Watcharatharapong, M. Minakshi Sundaram, S. Chakraborty, et al., “Effect of Transition Metal Cations on Stability Enhancement for Molybdate-Based Hybrid Supercapacitor,” ACS Applied Materials & Interfaces 9 (2017): 17977-17991.

[65]

F. Nti, D. A. Anang, and J. I. Han, “Facilely Synthesized NiMoO4/CoMoO4 Nanorods as Electrode Material for High Performance Supercapacitor,” Journal of Alloys and Compounds 742 (2018): 342-350.

[66]

S. Prabhu, A. Gowdhaman, S. Harish, M. Navaneetham, and R. Ramesh, “Synthesis of Petal-Like CoMoO4/r-GO Composites for High Performances Hybrid Supercapacitor,” Materials Letters 295 (2021): 129821.

[67]

Y. Wang, P. He, W. Lei, F. Dong, and T. Zhang, “Novel FeMoO4/graphene Composites Based Electrode Materials for Supercapacitors,” Composites Science and Technology 103 (2014): 16-21.

[68]

H. W. Nam, C. V. V. M. Gopi, S. Sambasivam, et al., “Binder-Free Honeycomb-Like FeMoO4 Nanosheet Arrays With Dual Properties of Both Battery-Type and Pseudocapacitive-Type Performances for Supercapacitor Applications,” Journal of Energy Storage 27 (2020): 101055.

[69]

B. Senthilkumar and R. Kalai Selvan, “Hydrothermal Synthesis and Electrochemical Performances of 1.7V NiMoO4⋅xH2O||FeMoO4 Aqueous Hybrid Supercapacitor,” Journal of Colloid and Interface Science 426 (2014): 280-286.

[70]

R. Thangappan, R. Dhinesh Kumar, and R. Jayavel, J Energy Storage 2020, 27, 101069.

[71]

S. M. Babulal, T. W. Chen, S. M. Chen, W. A. Al-Onazi, and A. M. Al-Mohaimeed, “Manganese Molybdenum Oxide Micro Rods Adorned Porous Carbon Hybrid Electrocatalyst for Electrochemical Determination of Furazolidone in Environmental Fluids,” Catalysts 11 (2021): 1397.

[72]

X. Wei, Y. Li, H. Peng, C. Liu, Y. Zhang, and P. Xiao, “Core-Shell NiCo2S4@MnMoO4 as an Advanced Electrode Material for High-Performance Electrochemical Energy Storage,” ChemElectroChem 4 (2017): 2634-2642.

[73]

Y. Lu, M. Zhao, R. Luo, et al., “Electrospun Porous MnMoO4 Nanotubes as High-Performance Electrodes for Asymmetric Supercapacitors,” Journal of Solid State Electrochemistry 22 (2018): 657-666.

[74]

Y. P. Gao, K. J. Huang, C. X. Zhang, S. S. Song, and X. Wu, “High-Performance Symmetric Supercapacitor Based on Flower-Like Zinc Molybdate,” Journal of Alloys and Compounds 731 (2018): 1151-1158.

[75]

B. J. Reddy, P. Vickraman, and A. S. Justin, Appl. Phys. A 2018, 124, 1.

[76]

O. Derkacheva and D. Sukhov, “Investigation of Lignins by FTIR Spectroscopy,” Macromolecular Symposia 265 (2008): 61-68.

[77]

C. Berthomieu and R. Hienerwadel, “Fourier Transform Infrared (FTIR) Spectroscopy,” Photosynthesis Research 101 (2009): 157-170.

[78]

V. Ţucureanu, A. Matei, and A. M. Avram, “FTIR Spectroscopy for Carbon Family Study,” Critical Reviews in Analytical Chemistry 46 (2016): 502-520, https://doi.org/10.1080/10408347.2016.1157013.

[79]

M. A. Mohamed, J. Jaafar, A. F. Ismail, M. H. D. Othman, and M. A. Rahman, Membrane Characterization 2017, 3.

[80]

Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, “Uniaxial Strain on Graphene: Raman Spectroscopy Study and Band-Gap Opening,” ACS Nano 2 (2008): 2301-2305.

[81]

I. E. Wachs and C. A. Roberts, “Monitoring Surface Metal Oxide Catalytic Active Sites With Raman Spectroscopy,” Chemical Society Reviews 39 (2010): 5002.

[82]

I. E. Wachs, J. M. Jehng, G. Deo, B. M. Weckhuysen, V. V. Guliants, and J. B. Benziger, “In Situ Raman Spectroscopy Studies of Bulk and Surface Metal Oxide Phases During Oxidation Reactions,” Catalysis Today 32 (1996): 47-55.

[83]

E. Murugan, S. Govindaraju, and S. Santhoshkumar, “Hydrothermal Synthesis, Characterization and Electrochemical Behavior of NiMoO4 Nanoflower and NiMoO4/rGO Nanocomposite for High-Performance Supercapacitors,” Electrochimica Acta 392 (2021): 138973.

[84]

X. Tian, X. Li, T. Yang, et al., “Porous Worm-Like NiMoO4 Coaxially Decorated Electrospun Carbon Nanofiber as Binder-Free Electrodes for High Performance Supercapacitors and Lithium-Ion Batteries,” Applied Surface Science 434 (2018): 49-56.

[85]

K. Seevakan, A. Manikandan, P. Devendran, A. Baykal, and T. Alagesan, “Electrochemical and Magneto-Optical Properties of Cobalt Molybdate Nano-Catalyst as High-Performance Supercapacitor,” Ceramics International 44 (2018): 17735-17742.

[86]

A. R. Gonzalez-Elipe, J. P. Espinos, A. Fernandez, and G. Munuera, “XPS Study of the Surface Carbonation/Hydroxylation State of Metal Oxides,” Applied Surface Science 45 (1990): 103-108.

[87]

J. C. Dupin, D. Gonbeau, P. Vinatier, and A. Levasseur, “Systematic XPS Studies of Metal Oxides, Hydroxides and Peroxides,” Physical Chemistry Chemical Physics 2 (2000): 1319-1324.

[88]

A. V. Nikam, B. L. V. Prasad, and A. A. Kulkarni, “Wet Chemical Synthesis of Metal Oxide Nanoparticles: A Review,” CrystEngComm 20 (2018): 5091-5107.

[89]

M. C. M. D. De Conti, S. Dey, W. E. Pottker, and F. A. La Porta, n.d.

[90]

Q. Yang, Z. Lu, J. Liu, et al., “Metal Oxide and Hydroxide Nanoarrays: Hydrothermal Synthesis and Applications as Supercapacitors and Nanocatalysts,” Progress in Natural Science: Materials International 23 (2013): 351-366.

[91]

M. Shandilya, R. Rai, and J. Singh, “Review: Hydrothermal Technology for Smart Materials,” Advances in Applied Ceramics 115 (2016): 354-376, https://doi.org/10.1080/17436753.2016.1157131.

[92]

A. B. Djurisic, Y. Y. Xi, Y. F. Hsu, and W. K. Chan, Recent Patents on Nanotechnology 2008, 1, 121.

[93]

X. Xu, J. Shen, N. Li, and M. Ye, “Microwave-Assisted Synthesis of Graphene/CoMoO4 Nanocomposites With Enhanced Supercapacitor Performance,” Journal of Alloys and Compounds 616 (2014): 58-65.

[94]

A. Kumar, Y. Kuang, Z. Liang, and X. Sun, “Microwave Chemistry, Recent Advancements and Eco-Friendly Microwave-Assisted Synthesis of Nanoarchitectures and Their Applications: A Review,” Materials Today Nano 11 (2020): 100076.

[95]

T. Liu, H. Chai, D. Jia, Y. Su, T. Wang, and W. Zhou, “Rapid Microwave-Assisted Synthesis of Mesoporous NiMoO4 Nanorod/Reduced Graphene Oxide Composites for High-Performance Supercapacitors,” Electrochimica Acta 180 (2015): 998-1006.

[96]

J. Zou, D. Xie, F. Zhao, et al., “Microwave Rapid Synthesis of Nickel Cobalt Sulfides/CNTs Composites as Superior Cycling Ability Electrode Materials for Supercapacitors,” Journal of Materials Science 56 (2021): 1561-1576.

[97]

F. L. Theiss, G. A. Ayoko, and R. L. Frost, “Synthesis of Layered Double Hydroxides Containing Mg2+, Zn2+, Ca2+ and Al3+ Layer Cations by Co-Precipitation Methods—A Review,” Applied Surface Science 383 (2016): 200-213.

[98]

S. A. Rastabi, R. S. Mamoory, N. Blomquist, M. Phadatare, and H. Olin, “Synthesis of a NiMoO4/3D-rGO Nanocomposite via Starch Medium Precipitation Method for Supercapacitor Performance,” Batteries 6 (2020): 5, https://doi.org/10.3390/batteries6010005.

[99]

H. Cao, N. Wu, Y. Liu, S. Wang, W. Du, and J. Liu, “Facile Synthesis of Rod-Like Manganese Molybdate Crystallines With Two-Dimentional Nanoflakes for Supercapacitor Application,” Electrochimica Acta 225 (2017): 605-613.

[100]

B. Joji Reddy, P. Vickraman, and A. Simon Justin, Bulletin of Materials Science 42 (2019): 1.

[101]

C. Yu, F. Zhao, J. Luo, L. Zhang, and X. Sun, “Recent Development of Lithium Argyrodite Solid-State Electrolytes for Solid-State Batteries: Synthesis, Structure, Stability and Dynamics,” Nano Energy 83 (2021): 105858.

[102]

K. S. Ranjith, G. S. R. Raju, N. R. Chodankar, et al., Nanomaterials 2020, Vol. 10, Page 2892020, 10, 289.

[103]

A. V. Nikam, B. L. V. Prasad, and A. A. Kulkarni, “Wet Chemical Synthesis of Metal Oxide Nanoparticles: A Review,” CrystEngComm 20 (2018): 5091-5107.

[104]

G. K. Veerasubramani, K. Krishnamoorthy, and S. J. Kim, “Electrochemical Performance of an Asymmetric Supercapacitor Based on Graphene and Cobalt Molybdate Electrodes,” RSC Advances 5 (2015): 16319-16327.

[105]

G. K. Veerasubramani, K. Krishnamoorthy, R. Sivaprakasam, and S. J. Kim, “Sonochemical Synthesis, Characterization, and Electrochemical Properties of MnMoO4 Nanorods for Supercapacitor Applications,” Materials Chemistry and Physics 147 (2014): 836-842.

[106]

S. M. Pawar, B. S. Pawar, J. H. Kim, O. S. Joo, and C. D. Lokhande, “Recent Status of Chemical Bath Deposited Metal Chalcogenide and Metal Oxide Thin Films,” Current Applied Physics 11 (2011): 117-161.

[107]

K. Xiao, L. Xia, G. Liu, S. Wang, L. X. Ding, and H. Wang, “Honeycomb-Like NiMoO4 ultrathin Nanosheet Arrays for High-Performance Electrochemical Energy Storage,” Journal of Materials Chemistry A 3 (2015): 6128-6135.

[108]

Z. Ping, L. Junjie, and L. Yunchun, “Optimization of the Electrodeposition Process of a Polypyrrole/Multi-Walled Carbon Nanotube Fiber Electrode for a Flexible Supercapacitor,” RSC Advances 12 (2022): 18134-18143.

[109]

B. Şahin, R. Aydin, S. Soylu, et al., “The Effect of Thymus Syriacus Plant Extract on the Main Physical and Antibacterial Activities of ZnO Nanoparticles Synthesized by SILAR Method,” Inorganic Chemistry Communications 135 (2022): 109088.

[110]

H. S. Chavan, B. Hou, A. T. A. Ahmed, et al., “Nanoflake NiMoO4 Based Smart Supercapacitor for Intelligent Power Balance Monitoring,” Solar Energy Materials and Solar Cells 185 (2018): 166-173.

[111]

K. K. Purushothaman, M. Cuba, and G. Muralidharan, “Supercapacitor Behavior of α-MnMoO4 Nanorods on Different Electrolytes,” Materials Research Bulletin 47 (2012): 3348-3351.

[112]

M. Parashar, V. K. Shukla, and R. Singh, “Metal Oxides Nanoparticles via Sol-Gel Method: A Review on Synthesis, Characterization and Applications,” Journal of Materials Science: Materials in Electronics 31 (2020): 3729, https://doi.org/10.1007/s10854-020-02994-8.

[113]

K. Liu, C. Yu, W. Guo, et al., “Recent Research Advances of Self-Discharge in Supercapacitors: Mechanisms and Suppressing Strategies,” Journal of Energy Chemistry 58 (2021): 94-109.

[114]

M. Haque, Q. Li, C. Rigato, et al., “Identification of Self-Discharge Mechanisms of Ionic Liquid Electrolyte Based Supercapacitor Under High-Temperature Operation,” Journal of Power Sources 485 (2021): 229328, https://doi.org/10.1016/J.JPOWSOUR.2020.229328.

[115]

D. Yu, Z. Zhang, Y. Teng, Y. Meng, X. Zhao, and X. Liu, “Controllable Synthesis of Cobalt Molybdate Nanoarrays on Nickel Foam as the Advanced Electrodes of Alkaline Battery-Supercapacitor Hybrid Devices,” Journal of Alloys and Compounds 835 (2020): 155244, https://doi.org/10.1016/J.JALLCOM.2020.155244.

[116]

P. Sharma, M. Minakshi Sundaram, T. Watcharatharapong, D. Laird, H. Euchner, and R. Ahuja, “Zn Metal Atom Doping on the Surface Plane of One-Dimesional NiMoO4 Nanorods With Improved Redox Chemistry,” ACS Applied Materials & Interfaces 12 (2020): 44815-44829.

[117]

B. Senthilkumar, R. K. Selvan, D. Meyrick, and M. Minakshi, “Synthesis and Characterization of Manganese Molybdate for Symmetric Capacitor Applications,” International Journal of Electrochemical Science 10 (2015): 185-193.

[118]

P. Sivakumar, L. Kulandaivel, J. Park, C. J. Raj, R. Ramesh, and H. Jung, “Rational Design and Fabrication of One-Dimensional Hollow Cuboid-Like FeMoO4 Architecture as a High Performance Electrode for Hybrid Supercapacitor,” Ceramics International 48 (2022): 29144-29151.

[119]

Q. Xu, W. Li, L. Ding, W. Yang, H. Xiao, and W. J. Ong, “Function-Driven Engineering of 1D Carbon Nanotubes and 0D Carbon Dots: Mechanism, Properties and Applications,” Nanoscale 11 (2019): 1475-1504.

[120]

R. K. Joshi and J. J. Schneider, “Assembly of One Dimensional Inorganic Nanostructures Into Functional 2D and 3D Architectures. Synthesis, Arrangement and Functionality,” Chemical Society Reviews 41 (2012): 5285.

[121]

Q. Gao, A. Zhao, Z. Gan, et al., “Facile Fabrication and Growth Mechanism of 3D Flower-Like Fe3O4 Nanostructures and Their Application as Sers Substrates,” CrystEngComm 14 (2012): 4834.

[122]

C. Hu, X. Zhang, B. Liu, et al., “Orderly and Highly Dense Polyaniline Nanorod Arrays Fenced on Carbon Nanofibers for All-Solid-State Flexible Electrochemical Energy Storage,” Electrochimica Acta 338 (2020): 135846.

[123]

Z. H. Huang, F. F. Sun, Z. Y. Yuan, et al., “An Electro-Activated Bimetallic Zinc-Nickel Hydroxide Cathode for Supercapacitor With Super-Long 140,000 Cycle Durability,” Nano Energy 82 (2021): 105727.

[124]

X. Zhu, X. Li, H. Tao, and M. Li, “Preparation of Co2Al Layered Double Hydroxide Nanosheet/Co2Mn Bimetallic Hydroxide Nanoneedle Nanocomposites on Nickel Foam for Supercapacitors,” Journal of Alloys and Compounds 851 (2021): 156868.

[125]

S. Wang, J. Hu, L. Jiang, et al., “High-Performance 3D Cuo/Cu Flowers Supercapacitor Electrodes by Femtosecond Laser Enhanced Electrochemical Anodization,” Electrochimica Acta 293 (2019): 273-282.

[126]

Z. Wang, H. Su, F. Liu, et al., “Establishing Highly-Efficient Surface Faradaic Reaction in Flower-Like NiCo2O4 Nano-/Micro-Structures for Next-Generation Supercapacitors,” Electrochimica Acta 307 (2019): 302-309.

[127]

S. A. Ahmad, M. Z. U. Shah, M. Arif, et al., “High Power Aqueous Hybrid Asymmetric Supercapacitor Based on Zero-Dimensional ZnS Nanoparticles With Two-Dimensional Nanoflakes CuSe2 Nanostructures,” Ceramics International 49 (2023): 20007-20016.

[128]

J. N. Tiwari, R. N. Tiwari, and K. S. Kim, “Zero-Dimensional, One-Dimensional, Two-Dimensional and Three-Dimensional Nanostructured Materials for Advanced Electrochemical Energy Devices,” Progress in Materials Science 57 (2012): 724-803.

[129]

Y. Gogotsi, “Materials Science: Energy Storage Wrapped Up,” Nature 509 (2014): 568-570.

[130]

J. Bae, M. K. Song, Y. J. Park, J. M. Kim, M. Liu, and Z. L. Wang, “Fiber Supercapacitors Made of Nanowire-Fiber Hybrid Structures for Wearable/Flexible Energy Storage,” Angewandte Chemie International Edition 50 (2011): 1683-1687.

[131]

P. R. Jothi, K. Shanthi, R. R. Salunkhe, et al., “Synthesis and Characterization of α-­NiMoO4 Nanorods for Supercapacitor ­Application,” European Journal of Inorganic Chemistry 2015 (2015): 3694-3699.

[132]

C. Xiong, M. Li, W. Zhao, et al., “A Smart Paper@Polyaniline Nanofibers Incorporated Vitrimer Bifunctional Device With Reshaping, Shape-Memory and Self-Healing Properties Applied in High-Performance Supercapacitors and Sensors,” Chemical Engineering Journal 396 (2020): 125318.

[133]

X. Wu and S. Yao, “Flexible Electrode Materials Based on WO3 Nanotube Bundles for High Performance Energy Storage Devices,” Nano Energy 42 (2017): 143-150.

[134]

D. Fang, J. Zhou, L. Sheng, W. Tang, and J. Tang, “Juglone Bonded Carbon Nanotubes Interweaving Cellulose Nanofibers as Self-Standing Membrane Electrodes for Flexible High Energy Supercapacitors,” Chemical Engineering Journal 396 (2020): 125325.

[135]

T. A. Crowley, K. J. Ziegler, D. M. Lyons, et al., “Synthesis of Metal and Metal Oxide Nanowire and Nanotube Arrays Within a Mesoporous Silica Template,” Chemistry of Materials 15 (2003): 3518-3522.

[136]

F. Riboni, N. T. Nguyen, S. So, and P. Schmuki, “Aligned Metal Oxide Nanotube Arrays: Key-Aspects of Anodic TiO2 nanotube Formation and Properties,” Nanoscale Horizons 1 (2016): 445-466.

[137]

Q. Liu, X. Hong, X. You, et al., “Designing Heterostructured Metal Sulfide Core-Shell Nanoneedle Films as Battery-Type Electrodes for Hybrid Supercapacitors,” Energy Storage Materials 24 (2020): 541-549.

[138]

Y. Ouyang, H. Ye, X. Xia, et al., “Hierarchical Electrodes of NiCo2S4 Nanosheets-Anchored Sulfur-Doped Co3O4 Nanoneedles With Advanced Performance for Battery-Supercapacitor Hybrid Devices,” Journal of Materials Chemistry A 7 (2019): 3228-3237.

[139]

V. Sahu, S. Goel, A. Kumar Tomar, G. Singh, and R. K. Sharma, “Graphene Nanoribbons @ Vanadium Oxide Nanostrips for Supercapacitive Energy Storage,” Electrochimica Acta 230 (2017): 255-264.

[140]

V. Sahu, S. Shekhar, R. K. Sharma, and G. Singh, “Ultrahigh Performance Supercapacitor From Lacey Reduced Graphene Oxide Nanoribbons,” ACS Applied Materials & Interfaces 7 (2015): 3110-3116.

[141]

Z. Yu, B. Duong, D. Abbitt, and J. Thomas, “Highly Ordered MnO2Nanopillars for Enhanced Supercapacitor Performance,” Advanced Materials 25 (2013): 3302-3306.

[142]

Y. Zheng, Z. Li, J. Xu, et al., “Multi-Channeled Hierarchical Porous Carbon Incorporated Co3O4 Nanopillar Arrays as 3D Binder-Free Electrode for High Performance Supercapacitors,” Nano Energy 20 (2016): 94-107.

[143]

W. H. Low, S. S. Lim, C. W. Siong, C. H. Chia, and P. S. Khiew, “One Dimensional MnV2O6 Nanobelts on Graphene as Outstanding Electrode Material for High Energy Density Symmetric Supercapacitor,” Ceramics International 47 (2021): 9560-9568.

[144]

C. He, T. Bo, Y. Ke, B. T. Wang, J. Tao, and P. K. Shen, “Black Potassium Titanate Nanobelts: Ultrafast and Durable Aqueous Redox Electrolyte Energy Storage,” Journal of Power Sources 483 (2021): 229140.

[145]

Y. Wang, C. Hao, Y. Ge, et al., “Fuel Consumption and Emission Performance From Light-Duty Conventional/Hybrid-Electric Vehicles Over Different Cycles and Real Driving Tests,” Fuel 278 (2020): 117985.

[146]

D. Guo, Y. Luo, X. Yu, Q. Li, and T. Wang, “High Performance NiMoO4 Nanowires Supported on Carbon Cloth as Advanced Electrodes for Symmetric Supercapacitors,” Nano Energy 8 (2014): 174-182.

[147]

D. K. Denis, X. Sun, J. Zhang, et al., “Solid Solution Engineering of Co-Ni-Based Ternary Molybdate Nanorods Toward Hybrid Supercapacitors and Lithium-Ion Batteries as High-Performance Electrodes,” ACS Applied Energy Materials 3 (2020): 3955-3965.

[148]

D. Muthu, S. Vargheese, Y. Haldorai, and R. T. Rajendra Kumar, “NiMoO4/Reduced Graphene Oxide Composite as an Electrode Material Forhybrid Supercapacitor,” Materials Science in Semiconductor Processing 135 (2021): 106078.

[149]

Y. Zhang, H. L. Gao, X. D. Jia, et al., “NiMoO4 Nanorods Supported on Nickel Foam for High-Performance Supercapacitor Electrode Materials,” Journal of Renewable and Sustainable Energy 10 (2018): 54101, https://doi.org/10.1063/1.5032271.

[150]

K. Xu, J. Chao, W. Li, et al., “CoMoO4·0.9H2O Nanorods Grown on Reduced Graphene Oxide as Advanced Electrochemical Pseudocapacitor Materials,” RSC Advances 4 (2014): 34307.

[151]

G. Harichandran, S. Radha, J. Yesuraj, and B. Muthuraaman, “Synthesis and Characterization of Cobalt Molybdate Dihydrate Nanorods Arrays for Supercapacitor Electrode Application,” Applied Physics A 127 (2021): 1, https://doi.org/10.1007/s00339-021-04748-7.

[152]

B. K. Satpathy, R. Barik, A. K. Padhy, and M. Mohapatra, “Synthesis of PH-Moderated Cobalt Molybdate With Bifunctional (Photo Catalyst and Graphene-Based Supercapacitor) Application,” Ionics 26 (2020): 1443-1455.

[153]

D. T. Dam, T. Huang, and J. M. Lee, “Ultra-Small and Low Crystalline CoMoO4 nanorods for Electrochemical Capacitors,” Sustainable Energy & Fuels 1 (2017): 324-335.

[154]

G. Harichandran, S. Radha, P. Divya, and J. Yesuraj, “Facile Morphology-Controlled Synthesis of Nanostructured MnMoO4 Nanorods as an Advance Electrode Material for Supercapacitor Application,” Journal of Materials Science: Materials in Electronics 31 (2020): 1646, https://doi.org/10.1007/s10854-019-02681-3.

[155]

H. Gurusamy, R. Sivasubramanian, Y. Johnbosco, and M. Bhagavathiachari, “Morphology-Controlled Synthesis of One-Dimensional Zinc Molybdate Nanorods for High-Performance Pseudocapacitor Electrode Application,” Chemical Papers 75 (2021): 1715-1726.

[156]

Y. Zhang, C. Chang, H. Gao, et al., “High-Performance Supercapacitor Electrodes Based on NiMoO4 nanorods,” Journal of Materials Research 34 (2019): 2435-2444.

[157]

R. R. Samal, A. K. Samantara, S. Mahalik, J. N. Behera, B. Dash, and K. Sanjay, “An Anionic and Cationic Surfactant-Assisted Hydrothermal Synthesis of Cobalt Oxide Nanoparticles as the Active Electrode Material for Supercapacitors,” New Journal of Chemistry 45 (2021): 2795-2803.

[158]

R. Packiaraj, P. Devendran, K. S. Venkatesh, K. Mahendraprabhu, and N. Nallamuthu, “Carbon Nanotubes Aerogels Dispersed by Thermal Excitation on Ni Foam@NiCo2O4 Nanoneedles With Enhanced Properties for Supercapacitor,” J Energy Storage 34 (2021): 102029.

[159]

J. Du, L. Liu, H. Wu, H. Lv, and A. Chen, “Tunable N-Doped Hollow Carbon Spheres Induced by an Ionic Liquid for Energy Storage Applications,” Materials Chemistry Frontiers 5 (2021): 843-850.

[160]

H. Chen, X. Du, R. Wu, et al., “Facile Hydrothermal Synthesis of Porous MgCo2O4 nanoflakes as an Electrode Material for High-Performance Asymmetric Supercapacitors,” Nanoscale Advances 2 (2020): 3263-3275.

[161]

X. Zhang, R. Yuan, D. Pan, et al., “Controllable One-Pot Hydrothermal Preparation of Manganese Oxide With Diverse Crystal and Morphology for Supercapacitors: New Strategy for Introducing Short-Chain Surfactant,” Ceramics International 47 (2021): 6121-6129.

[162]

J. Wang, H. Yang, Q. Sun, et al., “Synthesis of δ-MnO2/C Assisted With Carbon Sheets by Directly Carbonizing From Corn Stalk for High-Performance Supercapacitor,” Materials Letters 285 (2021): 129116.

[163]

J. Cherusseri, N. Choudhary, K. Sambath Kumar, Y. Jung, and J. Thomas, “Recent Trends in Transition Metal Dichalcogenide Based Supercapacitor Electrodes,” Nanoscale Horizons 4 (2019): 840-858.

[164]

X. Liu, P. Wang, C. Chang, et al., “A New Hexagonal Porous Carbon Nanoplate Material Derived From Al-Based Metal Organic Framework for High Performance Supercapacitors,” Electrochimica Acta 371 (2021): 137826, https://doi.org/10.1016/J.ELECTACTA.2021.137826.

[165]

Y. Huang, Y. Li, G. Zhang, et al., “Simple Synthesis of 1D, 2D and 3D WO3 Nanostructures on Stainless Steel Substrate for High-Performance Supercapacitors,” Journal of Alloys and Compounds 778 (2019): 603-611.

[166]

G. Guan and M.-Y. Han, “Functionalized Hybridization of 2D Nanomaterials,” Advanced Science 6 (2019): 1901837.

[167]

A. Ajay, A. Paravannoor, J. Joseph, et al., “2 D Amorphous Frameworks of NiMoO4 for Supercapacitors: Defining the Role of Surface and Bulk Controlled Diffusion Processes,” Applied Surface Science 326 (2015): 39-47.

[168]

X. Mu, Y. Zhang, H. Wang, et al., “A High Energy Density Asymmetric Supercapacitor From Ultrathin Manganese Molybdate Nanosheets,” Electrochimica Acta 211 (2016): 217-224.

[169]

Z. Huang, Z. Zhang, X. Qi, et al., “Wall-Like Hierarchical Metal Oxide Nanosheet Arrays Grown on Carbon Cloth for Excellent Supercapacitor Electrodes,” Nanoscale 8 (2016): 13273-13279.

[170]

Y. Cao, W. Li, K. Xu, et al., “MnMoO4·4H2O Nanoplates Grown on a Ni Foam Substrate for Excellent Electrochemical Properties,” Journal of Materials Chemistry A: Materials for Energy and Sustainability 2 (2014): 20723-20728.

[171]

Y. Abbas, S. Yun, M. S. Javed, et al., “Anchoring 2D NiMoO4 Nano-Plates on Flexible Carbon Cloth as a Binder-Free Electrode for Efficient Energy Storage Devices,” Ceramics International 46 (2020): 4470-4476.

[172]

S. Hussain, M. S. Javed, S. Asim, et al., “Novel Gravel-Like NiMoO4 Nanoparticles on Carbon Cloth for Outstanding Supercapacitor Applications,” Ceramics International 46 (2020): 6406-6412.

[173]

L. Zhang, D. Zhang, Z. Ren, et al., “Mesoporous NiCo2O4 Micro/Nanospheres With Hierarchical Structures for Supercapacitors and Methanol Electro-Oxidation,” ChemElectroChem 4 (2017): 441-449.

[174]

P. Ou, Q. Zhou, J. Li, et al., “Facile Ethylene Glycol-Assisted Hydrothermal Synthesis of MoO2 nanospheres for High-Performance Supercapacitors,” Materials Research Express 6 (2019): 095044.

[175]

G. Li and C. Xu, “Hydrothermal Synthesis of 3D NixCo1−xS2 Particles/Graphene Composite Hydrogels for High Performance Supercapacitors,” Carbon 90 (2015): 44-52.

[176]

J. Sun, Y. Wang, Y. Zhang, C. Xu, and H. Chen, “Egg Albumin-Assisted Hydrothermal Synthesis of Co3O4 Quasi-Cubes as Superior Electrode Material for Supercapacitors With Excellent Performances,” Nanoscale Research Letters 14 (2019): 340, https://doi.org/10.1186/s11671-019-3172-y.

[177]

D. Ghosh, S. Giri, M. Moniruzzaman, T. Basu, M. Mandal, and C. K. Das, “α MnMoO4/graphene Hybrid Composite: High Energy Density Supercapacitor Electrode Material,” Dalton Transactions 43 (2014): 11067-11076.

[178]

X. Zhang, Z. Li, Z. Yu, L. Wei, and X. Guo, “Mesoporous NiMoO4 Microspheres Decorated by Ag Quantum Dots as Cathode Material for Asymmetric Supercapacitors: Enhanced Interfacial Conductivity and Capacitive Storage,” Applied Surface Science 505 (2020): 144513.

[179]

P. Sivakumar, C. J. Raj, J. Park, and H. Jung, “Synergistic Effects of Nanoarchitecture and Oxygen Vacancy in Nickel Molybdate Hollow Sphere Towards a High-Performance Hybrid Supercapacitor,” International Journal of Energy Research 45 (2021): 21516-21526.

[180]

D. Cai, D. Wang, B. Liu, et al., “Comparison of the Electrochemical Performance of NiMoO4 Nanorods and Hierarchical Nanospheres for Supercapacitor Applications,” ACS Applied Materials & Interfaces 5 (2013): 12905-12910.

[181]

J. Candler, T. Elmore, B. K. Gupta, L. Dong, S. Palchoudhury, and R. K. Gupta, “New Insight Into High-Temperature Driven Morphology Reliant CoMoO4 Flexible Supercapacitors,” New Journal of Chemistry 39 (2015): 6108-6116.

[182]

W. Li, X. Wang, Y. Hu, et al., “Hydrothermal Synthesized of CoMoO4 Microspheres as Excellent Electrode Material for Supercapacitor,” Nanoscale Research Letters 13 (2018): 210, https://doi.org/10.1186/s11671-018-2540-3.

[183]

D. Ghosh, S. Giri, M. Moniruzzaman, T. Basu, M. Mandal, and C. K. Das, “α MnMoO4/graphene Hybrid Composite: High Energy Density Supercapacitor Electrode Material,” Dalton Transactions 43 (2014): 11067-11076.

[184]

P. Forouzandeh and S. C. Pillai, “Two-Dimensional (2D) Electrode Materials for Supercapacitors,” Materials Today: Proceedings 41 (2021): 498-505.

[185]

T. Kokulnathan, T. W. Chen, S. M. Chen, J. V. Kumar, S. Sakthinathan, and E. R. Nagarajan, “Hydrothermal Synthesis of Silver Molybdate/Reduced Graphene Oxide Hybrid Composite: An Efficient Electrode Material for the Electrochemical Detection of Tryptophan in Food and Biological Samples,” Composites, Part B: Engineering 169 (2019): 249-257.

[186]

S. Alagarsamy, R. Sundaresan, S. M. Chen, R. Rasu, and M. A. Mohammed, “An Ultrasensitive Carbamate Pesticide Detection Sensor Based on Metal Molybdate Encapsulated With Boron Doped Reduced Graphene Oxide Nanocomposite,” Colloids and Surfaces. A, Physicochemical and Engineering Aspects 673 (2023): 131830, https://doi.org/10.1016/J.COLSURFA.2023.131830.

[187]

X. Xia, W. Lei, Q. Hao, W. Wang, and X. Wang, “One-Step Synthesis of CoMoO4/Graphene Composites With Enhanced Electrochemical Properties for Supercapacitors,” Electrochimica Acta 99 (2013): 253-261.

[188]

Y. Jiang, X. Zheng, X. Yan, Y. Li, X. Zhao, and Y. Zhang, “3D Architecture of a Graphene/CoMoO4 Composite for Asymmetric Supercapacitors Usable at Various Temperatures,” Journal of Colloid and Interface Science 493 (2017): 42-50.

[189]

Y. Li, J. Jian, L. Xiao, et al., “Synthesis of NiMoO4 Nanosheets on Graphene Sheets as Advanced Supercapacitor Electrode Materials,” Materials Letters 184 (2016): 21-24.

[190]

Y. Li, J. Jian, Y. Fan, et al., “Facile One-Pot Synthesis of a NiMoO4/reduced Graphene Oxide Composite as a Pseudocapacitor With Superior Performance,” RSC Advances 6 (2016): 69627-69633.

[191]

X. Liu, K. Zhang, B. Yang, et al., “Three-Dimensional Graphene Skeletons Supported Nickel Molybdate Nanowire Composite as Novel Ultralight Electrode for Supercapacitors,” Materials Letters 164 (2016): 401-404.

[192]

L. Jinlong, Y. Meng, and L. Tongxiang, “Enhanced Performance of NiMoO4 Nanoparticles and Quantum Dots and Reduced Nanohole Graphene Oxide Hybrid for Supercapacitor Applications,” Applied Surface Science 419 (2017): 624-630.

[193]

O. Rabbani, S. Ghasemi, and S. R. Hosseini, “Sonochemical Assisted Synthesis of Manganese-Nickel Molybdate/Reduced Graphene Oxide Nanohybrid for Energy Storage,” Journal of Alloys and Compounds 840 (2020): 155665.

[194]

M. Beemarao, P. Kanagambal, K. Ravichandran, et al., “Hybrids of Porous NiMoO4@Reduced Graphene Oxide Composites for Asymmetric Supercapacitor Applications,” Inorganic Chemistry Communications 153 (2023): 110853, https://doi.org/10.1016/J.INOCHE.2023.110853.

[195]

K. Yousefipour, R. Sarraf-Mamoory, and A. Yourdkhani, “Supercapacitive Properties of Nickel Molybdate/rGO Hybrids Prepared By the Hydrothermal Method,” Surfaces and Interfaces 29 (2022): 101638.

[196]

K. Yousefipour, R. Sarraf-Mamoory, and A. Yourdkhani, “Supercapacitive Performance of Fe-Doped Nickel Molybdate/rGO Hybrids: The Effect of rGO,” Colloids and Surfaces. A, Physicochemical and Engineering Aspects 647 (2022): 129066, https://doi.org/10.1016/J.COLSURFA.2022.129066.

[197]

V. Kannan, H. J. Kim, H. C. Park, and H. S. Kim, “Single-Step Direct Hydrothermal Growth of NiMoO4 Nanostructured Thin Film on Stainless Steel for Supercapacitor Electrodes,” Nanomaterials 8 (2018): 563, https://doi.org/10.3390/NANO8080563.

[198]

Z. Zhang, Y. Liu, Z. Huang, et al., “Facile Hydrothermal Synthesis of NiMoO4@CoMoO4 hierarchical Nanospheres for Supercapacitor Applications,” Physical Chemistry Chemical Physics 17 (2015): 20795-20804.

[199]

N. S. Neeraj, B. Mordina, A. K. Srivastava, K. Mukhopadhyay, and N. E. Prasad, “Impact of Process Conditions on the Electrochemical Performances of NiMoO4 Nanorods and Activated Carbon Based Asymmetric Supercapacitor,” Applied Surface Science 473 (2019): 807-819.

[200]

D. Guo, Z. Guan, D. Hu, et al., “Boosting the Capacitive Performance of Hierarchical Cobalt Molybdate Hybrid Electrodes for Asymmetric Supercapacitors,” Journal of Materials Science 56 (2021): 10965-10978.

[201]

Y. Wang, J. Sun, X. Qian, et al., “2D/2D Heterostructures of Nickel Molybdate and MXene With Strong Coupled Synergistic Effect Towards Enhanced Supercapacitor Performance,” Journal of Power Sources 414 (2019): 540-546.

[202]

X. Mu, J. Du, Y. Zhang, et al., “Construction of Hierarchical CNT/rGO-Supported MnMoO4 Nanosheets on Ni Foam for High-Performance Aqueous Hybrid Supercapacitors,” ACS Applied Materials & Interfaces 9 (2017): 35775-35784.

[203]

I. Ciofini and C. A. Daul, “DFT Calculations of Molecular Magnetic Properties of Coordination Compounds,” Coordination Chemistry Reviews 187 (2003): 238-239, https://doi.org/10.1016/S0010-8545(02)00330-2.

[204]

P. Morgante and R. Peverati, “A Tutorial Review on Some Undervalued Aspects of Density Functional Theory Calculations,” International Journal of Quantum Chemistry 120 (2020): e26332, https://doi.org/10.1002/qua.26332.

[205]

A. Jain, G. Hautier, C. J. Moore, et al., “A High-Throughput Infrastructure for Density Functional Theory Calculations,” Computational Materials Science 50 (2011): 2295-2310.

[206]

A. E. Mattsson, P. A. Schultz, M. P. Desjarlais, T. R. Mattsson, and K. Leung, “Designing Meaningful Density Functional Theory Calculations in Materials Science—A Primer,” Modelling and Simulation in Materials Science and Engineering 13 (2004): R1.

[207]

M. Bursch, J. M. Mewes, A. Hansen, and S. Grimme, “Best-Practice DFT Protocols for Basic Molecular Computational Chemistry,” Angewandte Chemie International Edition 61 (2022): e202205735, https://doi.org/10.1002/anie.202205735.

[208]

M. Orio, D. A. Pantazis, and F. Neese, “Density Functional Theory,” Photosynthesis Research 102 (2009): 443-453.

[209]

Y. Wen, P. Wang, X. Ding, X. Feng, and C. Qing, “Roles of Oxygen Vacancies in NiMoO4: A First-Principles Study,” Frontiers in Energy Research 9 (2021): 793032.

[210]

S. F. Matar, A. Largeteau, and G. Demazeau, “AMoO4 (A=Mg, Ni) Molybdates: Phase Stabilities, Electronic Structures and Chemical Bonding Properties From First Principles,” Solid State Sciences 12 (2010): 1779-1785.

[211]

L. An, J. Feng, Y. Zhang, et al., “Epitaxial Heterogeneous Interfaces on N-NiMoO4 /NiS2 Nanowires/Nanosheets to Boost Hydrogen and Oxygen Production for Overall Water Splitting,” Advanced Functional Materials 29 (2019): 1805298.

[212]

L. H. da, S. Lacerda, and M. A. San-Miguel, “Unraveling the MnMoO4 Polymorphism: A Comprehensive DFT Investigation of α, β, and ω Phases,” Journal of Materials Science 57 (2022): 10179, https://doi.org/10.1007/s10853-022-07277-7.

[213]

L. S. Cavalcante, E. Moraes, M. A. P. Almeida, et al., “A Combined Theoretical and Experimental Study of Electronic Structure and Optical Properties of β-ZnMoO4 Microcrystals,” Polyhedron 54 (2013): 13-25.

[214]

V. Sawant, R. Deshmukh, and C. Awati, “Machine Learning Techniques for Prediction of Capacitance and Remaining Useful Life of Supercapacitors: A Comprehensive Review,” Journal of Energy Chemistry 77 (2023): 438-451.

[215]

S. Jha, M. Yen, Y. S. Salinas, E. Palmer, J. Villafuerte, and H. Liang, “Machine Learning-Assisted Materials Development and Device Management in Batteries and Supercapacitors: Performance Comparison and Challenges,” Journal of Materials Chemistry A 11 (2023): 3904-3936.

[216]

A. Ibrahem Ahmed Osman, A. Najah Ahmed, M. F. Chow, Y. Feng Huang, and A. El-Shafie, “Extreme Gradient Boosting (Xgboost) Model to Predict the Groundwater Levels in Selangor Malaysia,” Ain Shams Engineering Journal 12 (2021): 1545-1556.

[217]

B. Zheng and G. X. Gu, “Prediction of Graphene Oxide Functionalization Using Gradient Boosting: Implications for Material Chemical Composition Identification,” ACS Applied Nano Materials 4 (2021): 3167-3174.

[218]

S. Banik, K. Balasubramanian, S. Manna, S. Derrible, and S. K. R. S. Sankaranarayananan, “Evaluating Generalized Feature Importance via Performance Assessment of Machine Learning Models for Predicting Elastic Properties of Materials,” Computational Materials Science 236 (2024): 112847.

[219]

S. B. Kotsiantis, I. D. Zaharakis, and P. E. Pintelas, “Machine Learning: A Review of Classification and Combining Techniques,” Artificial Intelligence Review 26 (2006): 159-190.

[220]

D. Dhall, R. Kaur, and M. Juneja, “Machine Learning: A Review of the Algorithms and Its Applications,” Lecture Notes in Electrical Engineering 597 (2020): 47.

[221]

J. Alzubi, A. Nayyar, and A. Kumar, “Machine Learning From Theory to Algorithms: An Overview,” Journal of Physics: Conference Series 1142 (2018): 012012.

[222]

W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia, and J. Liu, “Battery-Supercapacitor Hybrid Devices: Recent Progress and Future Prospects,” Advanced Science 4 (2017): 1600539.

[223]

Y. Shao, M. F. El-Kady, J. Sun, et al., “Design and Mechanisms of Asymmetric Supercapacitors,” Chemical Reviews 118 (2018): 9233-9280.

[224]

N. Choudhary, C. Li, J. Moore, et al., “Asymmetric Supercapacitor Electrodes and Devices,” Advanced Materials 29 (2017): 1605336.

RIGHTS & PERMISSIONS

2025 The Author(s). Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

63

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/