Improving the Performance of Potassium Birnessite Cathodes for Sodium-Ion Batteries by Partial Ion Exchange

Manuel Aranda , Rafael Klee , Pedro Lavela , José L. Tirado

Battery Energy ›› 2025, Vol. 4 ›› Issue (3) : e20240065

PDF
Battery Energy ›› 2025, Vol. 4 ›› Issue (3) : e20240065 DOI: 10.1002/bte2.20240065
RESEARCH ARTICLE

Improving the Performance of Potassium Birnessite Cathodes for Sodium-Ion Batteries by Partial Ion Exchange

Author information +
History +
PDF

Abstract

The current study explores the synthesis and electrochemical performance of potassium birnessite as a cathode material for sodium-ion batteries (SIBs), achieved through partial ion exchange resulting from partial potassium deintercalation followed by sodium intercalation during the first electrochemical cycle. Three samples of potassium birnessite (KB400, KB500, and KB600) are synthesized using a sol-gel method and subsequently calcined at different temperatures to evaluate the influence of crystal water and K+ ions on structural stability and their electrochemical performance. X-ray diffraction analysis confirms the formation of samples with high crystallinity. Additionally, X-ray fluorescence, X-ray photoelectron spectroscopy, and thermogravimetric analysis are employed to verify their chemical composition and oxidation states. Among the samples, KB500 exhibits the most favorable electrochemical performance, achieving a specific capacity of 175 mAh g-1 at C/10 when cycled within a voltage range of 1.6-4.2 V. Long-term cycling tests at a narrower potential range of 2-3.6 V demonstrate promising values of 110 mAh g-1 in capacity for KB500, with a retention of 90% over 80 cycles. The presence of potassium and interlayer water is crucial for enhancing structural stability and ion diffusion. These findings suggest that KB500 could serve as a promising cathode material for SIBs, providing a structurally stable option for energy storage applications.

Keywords

cathode materials / potassium birnessite / sodium-ion batteries

Cite this article

Download citation ▾
Manuel Aranda, Rafael Klee, Pedro Lavela, José L. Tirado. Improving the Performance of Potassium Birnessite Cathodes for Sodium-Ion Batteries by Partial Ion Exchange. Battery Energy, 2025, 4(3): e20240065 DOI:10.1002/bte2.20240065

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

N. Yabuuchi, K. Kubota, M. Dahbi, and S. Komaba, “Research Development on Sodium-Ion Batteries,” Chemical Reviews 114, no. 23 (2014): 11636-11682, https://doi.org/10.1021/cr500192f.

[2]

L. H. P. Jones and A. A. Milne, “Birnessite, a New Manganese Oxide Mineral From Aberdeenshire, Scotland,” Mineralogical Magazine and Journal of the Mineralogical Society 31, no. 235 (1956): 283-288, https://doi.org/10.1180/minmag.1956.031.235.01.

[3]

J. Cai, J. Liu, and S. L. Suib, “Preparative Parameters and Framework Dopant Effects in the Synthesis of Layer-Structure Birnessite by Air Oxidation,” Chemistry of Materials 14, no. 5 (2002): 2071-2077, https://doi.org/10.1021/cm010771h.

[4]

V. A. Drits, E. Silvester, A. I. Gorshkov, and A. Manceau, “Structure of Synthetic Monoclinic Na-Rich Birnessite and Hexagonal Birnessite; I, Results From X-Ray Diffraction and Selected-Area Electron Diffraction,” American Mineralogist 82, no. 9-10 (1997): 946-961, https://doi.org/10.2138/am-1997-9-1012.

[5]

L. D. Kulish, P. Nukala, R. Scholtens, A. G. M. Uiterwijk, R. Hamming-Green, and G. R. Blake, “Structural Modulation in Potassium Birnessite Single Crystals,” Journal of Materials Chemistry C 9, no. 4 (2021): 1370-1377, https://doi.org/10.1039/D0TC05396A.

[6]

J. E. Post and D. R. Veblen, “Crystal Structure Determinations of Synthetic Sodium, Magnesium, and Potassium Birnessite Using Tem and the Rietveld Method,” American Mineralogist 75 (1990): 477-489.

[7]

D. W. Oscarson, P. M. Huang, and W. K. Liaw, “Role of Manganese in the Oxidation of Arsenite by Freshwater Lake Sediments,” Clays and Clay Minerals 29, no. 3 (1981): 219-225, https://doi.org/10.1346/CCMN.1981.0290308.

[8]

D. C. Golden, J. B. Dixon, and C. C. Chen, “Ion Exchange, Thermal Transformations, and Oxidizing Properties of Birnessite,” Clays and Clay Minerals 34, no. 5 (1986): 511-520.

[9]

J. U. Choi, Y. J. Park, J. H. Jo, L. Y. Kuo, P. Kaghazchi, and S. T. Myung, “Unraveling the Role of Earth-Abundant Fe in the Suppression of Jahn-Teller Distortion of P′2-Type Na2/3MnO2: Experimental and Theoretical Studies,” ACS Applied Materials & Interfaces 10, no. 48 (2018): 40978-40984, https://doi.org/10.1021/acsami.8b16522.

[10]

R. J. Gummow, A. de Kock, and M. M. Thackeray, “Improved Capacity Retention in Rechargeable 4 V Lithium/Lithium-Manganese Oxide (Spinel) Cells,” Solid State Ionics 69, no. 1 (1994): 59-67, https://doi.org/10.1016/0167-2738(94)90450-2.

[11]

M. M. Thackeray, “Manganese Oxides for Lithium Batteries,” Progress in Solid State Chemistry 25, no. 1-2 (1997): 1-71, https://doi.org/10.1016/S0079-6786(97)81003-5.

[12]

W. L. Pang, J. Z. Guo, X. H. Zhang, et al., “P2-type Na2/3Mn1/2Co1/3Cu1/6O2 as Advanced Cathode Material for Sodium-Ion Batteries: Electrochemical Properties and Electrode Kinetics,” Journal of Alloys and Compounds 790 (2019): 1092-1100, https://doi.org/10.1016/j.jallcom.2019.03.257.

[13]

Z. Y. Li, J. Zhang, R. Gao, H. Zhang, Z. Hu, and X. Liu, “Unveiling the Role of Co in Improving the High-Rate Capability and Cycling Performance of Layered Na0.7Mn0.7Ni0.3-xCoxO2 Cathode Materials for Sodium-Ion Batteries,” ACS Applied Materials & Interfaces 8, no. 24 (2016): 15439-15448, https://doi.org/10.1021/acsami.6b04073.

[14]

G. Wan, Y. Chen, B. Peng, et al., “Suppressing the P2-O2 Phase Transition and Na+/Vacancy Ordering in Na0.67Ni0.33Mn0.67O2 by a Delicate Multicomponent Modulation Strategy,” Battery Energy 2, no. 5 (2023), https://doi.org/10.1002/bte2.20230022.

[15]

C. Shi, L. Wang, X. Chen, et al., “Challenges of Layer-Structured Cathodes for Sodium-Ion Batteries,” Nanoscale Horizons 7, no. 4 (2022): 338-351, https://doi.org/10.1039/D1NH00585E.

[16]

N. Ortiz-Vitoriano, N. E. Drewett, E. Gonzalo, and T. Rojo, “High Performance Manganese-Based Layered Oxide Cathodes: Overcoming the Challenges of Sodium Ion Batteries,” Energy & Environmental Science 10, no. 5 (2017): 1051-1074, https://doi.org/10.1039/C7EE00566K.

[17]

P. F. Wang, Y. You, Y. X. Yin, and Y. G. Guo, “Layered Oxide Cathodes for Sodium-Ion Batteries: Phase Transition, Air Stability, and Performance,” Advanced Energy Materials 8, no. 8 (2018), https://doi.org/10.1002/aenm.201701912.

[18]

Y. Liu, X. Zhou, D. He, et al., “Natiox -Modified High-Nickel Layered Oxide Cathode for Stable Sodium-Ion Batteries,” Carbon Energy (2024), https://doi.org/10.1002/cey2.627.

[19]

Q. Ding, W. Zheng, A. Zhao, et al., “W-Doping Induced Efficient Tunnel-to-Layered Structure Transformation of Na0.44Mn1-xWxO2: Phase Evolution, Sodium-Storage Properties, and Moisture Stability,” Advanced Energy Materials 13, no. 21 (2023), https://doi.org/10.1002/aenm.202203802.

[20]

H. Liu, L. Kong, H. Wang, et al., “Reviving Sodium Tunnel Oxide Cathodes Based on Structural Modulation and Sodium Compensation Strategy Toward Practical Sodium-Ion Cylindrical Battery,” Advanced Materials (2024), https://doi.org/10.1002/adma.202407994.

[21]

H. Xia, X. Zhu, J. Liu, et al., “A Monoclinic Polymorph of Sodium Birnessite for Ultrafast and Ultrastable Sodium Ion Storage,” Nature Communications 9, no. 1 (2018): 5100, https://doi.org/10.1038/s41467-018-07595-y.

[22]

Y. Li, X. Feng, S. Cui, Q. Shi, L. Mi, and W. Chen, “From α-NaMnO2 to Crystal Water Containing Na-Birnessite: Enhanced Cycling Stability for Sodium-Ion Batteries,” CrystEngComm 18, no. 17 (2016): 3136-3141, https://doi.org/10.1039/C6CE00191B.

[23]

F. Zhao, S. Zeng, L. Duan, et al., “Synergistically Controlled Mechanism of Sodium Birnessite With a Larger Interlayer Distance for Fast Ion Intercalation Toward Sodium-Ion Batteries,” Journal of Physical Chemistry C 124, no. 52 (2020): 28431-28436, https://doi.org/10.1021/acs.jpcc.0c10237.

[24]

K. W. Nam, S. Kim, E. Yang, et al., “Critical Role of Crystal Water for a Layered Cathode Material in Sodium Ion Batteries,” Chemistry of Materials 27, no. 10 (2015): 3721-3725, https://doi.org/10.1021/acs.chemmater.5b00869.

[25]

N. Yabuuchi and S. Komaba, “Recent Research Progress on Iron- and Manganese-Based Positive Electrode Materials for Rechargeable Sodium Batteries,” Science and Technology of Advanced Materials 15, no. 4 (2014): 043501, https://doi.org/10.1088/1468-6996/15/4/043501.

[26]

M. M. Thackeray, S. H. Kang, C. S. Johnson, J. T. Vaughey, R. Benedek, and S. A. Hackney, “Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) Electrodes for Lithium-Ion Batteries,” Journal of Materials Chemistry 17, no. 30 (2007): 3112, https://doi.org/10.1039/b702425h.

[27]

Y. Wang, Z. Feng, P. Cui, et al., “Pillar-Beam Structures Prevent Layered Cathode Materials From Destructive Phase Transitions,” Nature Communications 12, no. 1 (2021): 13, https://doi.org/10.1038/s41467-020-20169-1.

[28]

B. Tian, W. Tang, K. Leng, et al., “Phase Transformations in TiS2 During K Intercalation,” ACS Energy Letters 2, no. 8 (2017): 1835-1840, https://doi.org/10.1021/acsenergylett.7b00529.

[29]

G. He and L. F. Nazar, “Crystallite Size Control of Prussian White Analogues for Nonaqueous Potassium-Ion Batteries,” ACS Energy Letters 2, no. 5 (2017): 1122-1127, https://doi.org/10.1021/acsenergylett.7b00179.

[30]

C. Vaalma, G. A. Giffin, D. Buchholz, and S. Passerini, “Non-Aqueous K-Ion Battery Based on Layered K0.3MnO2 and Hard Carbon/Carbon Black,” Journal of the Electrochemical Society 163, no. 7 (2016): A1295-A1299, https://doi.org/10.1149/2.0921607jes.

[31]

H. Kim, D. H. Seo, J. C. Kim, et al., “Investigation of Potassium Storage in Layered P3-Type K0.5 MnO2 Cathode,” Advanced Materials 29, no. 37 (2017): 0, https://doi.org/10.1002/adma.201702480.

[32]

S. Ching, D. J. Petrovay, M. L. Jorgensen, and S. L. Suib, “Sol−Gel Synthesis of Layered Birnessite-Type Manganese Oxides,” Inorganic Chemistry 36, no. 5 (1997): 883-890, https://doi.org/10.1021/ic961088d.

[33]

A. C. Gaillot, D. Flot, V. A. Drits, A. Manceau, M. Burghammer, and B. Lanson, “Structure of Synthetic K-Rich Birnessite Obtained by High-Temperature Decomposition of KMnO4. I. Two-Layer Polytype from 800°C Experiment,” Chemistry of Materials 15, no. 24 (2003): 4666-4678, https://doi.org/10.1021/cm021733g.

[34]

S. Kumakura, Y. Tahara, S. Sato, K. Kubota, and S. Komaba, “P′2-Na2/3Mn0.9Me0.1O2 (Me = Mg, Ti, Co, Ni, Cu, and Zn): Correlation Between Orthorhombic Distortion and Electrochemical Property,” Chemistry of Materials 29, no. 21 (2017): 8958-8962, https://doi.org/10.1021/acs.chemmater.7b02772.

[35]

H. Boumaiza, R. Coustel, G. Medjahdi, C. Ruby, and L. Bergaoui, “Conditions for the Formation of Pure Birnessite During the Oxidation of Mn(II) Cations in Aqueous Alkaline Medium,” Journal of Solid State Chemistry 248 (2017): 18-25, https://doi.org/10.1016/j.jssc.2017.01.014.

[36]

X. H. Feng, F. Liu, W. F. Tan, and X. W. Liu, “Synthesis of Birnessite From the Oxidation of Mn2+ by O2 in Alkali Medium: Effects of Synthesis Conditions,” Clays and Clay Minerals 52, no. 2 (2004): 240-250, https://doi.org/10.1346/CCMN.2004.0520210.

[37]

D. S. Yang and M. K. Wang, “Syntheses and Characterization of Birnessite by Oxidizing Pyrochroite in Alkaline Conditions,” Clays and Clay Minerals 50, no. 1 (2002): 63-69, https://doi.org/10.1346/000986002761002685.

[38]

A. Kozawa, T. Kalnoki-Kis, and J. F. Yeager, “Solubilities of Mn(II) and Mn(III) Ions in Concentrated Alkaline Solutions,” Journal of the Electrochemical Society 113, no. 5 (1966): 405, https://doi.org/10.1149/1.2423984.

[39]

H. Cui, G. Qiu, X. Feng, W. Tan, and F. Liu, “Birnessites With Different Average Manganese Oxidation States Synthesized, Characterized, and Transformed to Todorokite at Atmospheric Pressure,” Clays and Clay Minerals 57, no. 6 (2009): 715-724, https://doi.org/10.1346/CCMN.2009.0570605.

[40]

A. Gao, M. Li, N. Guo, et al., “K-Birnessite Electrode Obtained by Ion Exchange for Potassium-Ion Batteries: Insight Into the Concerted Ionic Diffusion and K Storage Mechanism,” Advanced Energy Materials 9, no. 1 (2019), https://doi.org/10.1002/aenm.201802739.

[41]

S. S. Fedotov, N. R. Khasanova, A. S. Samarin, et al., “AVPO4F (A = Li, K): A 4 V Cathode Material for High-Power Rechargeable Batteries,” Chemistry of Materials 28, no. 2 (2016): 411-415, https://doi.org/10.1021/acs.chemmater.5b04065.

[42]

K. Zhu, S. Guo, Q. Li, Y. Wei, G. Chen, and H. Zhou, “Tunable Electrochemistry via Controlling Lattice Water in Layered Oxides of Sodium-Ion Batteries,” ACS Applied Materials & Interfaces 9, no. 40 (2017): 34909-34914, https://doi.org/10.1021/acsami.7b09658.

[43]

M. Keller, D. Buchholz, and S. Passerini, “Layered Na-Ion Cathodes With Outstanding Performance Resulting From the Synergetic Effect of Mixed P- and O-Type Phases,” Advanced Energy Materials 6, no. 3 (2016), https://doi.org/10.1002/aenm.201501555.

[44]

A. C. Gaillot, V. A. Drits, A. Plançon, and B. Lanson, “Structure of Synthetic K-Rich Birnessites Obtained by High-Temperature Decomposition of KMnO4. 2. Phase and Structural Heterogeneities,” Chemistry of Materials 16, no. 10 (2004): 1890-1905, https://doi.org/10.1021/cm035236r.

[45]

Q. Li, G. Li, C. Fu, D. Luo, J. Fan, and L. Li, “K+-Doped Li1.2Mn0.54Co0.13Ni0.13O2: A Novel Cathode Material With an Enhanced Cycling Stability for Lithium-Ion Batteries,” ACS Applied Materials & Interfaces 6, no. 13 (2014): 10330-10341, https://doi.org/10.1021/am5017649.

[46]

M. Medarde, M. Mena, J. L. Gavilano, et al., “1D to 2D Na+ Ion Diffusion Inherently Linked to Structural Transitions in Na0.7CoO2,” Physical Review Letters 110, no. 26 (2013): 266401, https://doi.org/10.1103/PhysRevLett.110.266401.

[47]

J. E. B. Randles, “A Cathode Ray Polarograph. Part II.—The Current-Voltage Curves,” Transactions of the Faraday Society 44, (1948): 327-338, https://doi.org/10.1039/TF9484400327.

[48]

D. Yuan, X. Hu, J. Qian, et al., “P2-Type Na0.67Mn0.65Fe0.2Ni0.15O2 Cathode Material With High-Capacity for Sodium-Ion Battery,” Electrochimica Acta 116 (2014): 300-305, https://doi.org/10.1016/j.electacta.2013.10.211.

[49]

D. P. Siriwardena, J. F. S. Fernando, T. Wang, et al., “Na0.67Mn(1-x)FexO2 Compounds as High-Capacity Cathode Materials for Rechargeable Sodium-Ion Batteries,” ChemElectroChem 8, no. 3 (2021): 508-516, https://doi.org/10.1002/celc.202001297.

[50]

M. Wu, B. Zhang, Y. Ye, et al., “Anion-Induced Uniform and Robust Cathode-Electrolyte Interphase for Layered Metal Oxide Cathodes of Sodium Ion Batteries,” ACS Applied Materials & Interfaces 16, no. 12 (2024): 15586-15595, https://doi.org/10.1021/acsami.4c00199.

[51]

M. Aranda, P. Lavela, and J. L. Tirado, “A Novel Potassium-Containing Layered Oxide for the Cathode of Sodium-Ion Batteries,” Battery Energy 3, no. 2 (2024), https://doi.org/10.1002/bte2.20230057.

RIGHTS & PERMISSIONS

2024 The Author(s). Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

27

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/