Polymer Electrolytes for Compatibility With NCM Cathodes in Solid-State Lithium Metal Batteries: Challenges and Strategies

Zhiyuan Lin , Yunhang Li , Peipei Ding , Chenxiao Lin , Fang Chen , Ruoxin Yu , Yonggao Xia

Battery Energy ›› 2025, Vol. 4 ›› Issue (5) : e20240063

PDF
Battery Energy ›› 2025, Vol. 4 ›› Issue (5) : e20240063 DOI: 10.1002/bte2.20240063
REVIEW

Polymer Electrolytes for Compatibility With NCM Cathodes in Solid-State Lithium Metal Batteries: Challenges and Strategies

Author information +
History +
PDF

Abstract

Polymer electrolytes (PEs) compatible with NCM cathodes in solid-state lithium metal batteries (SSLMBs) are gaining recognition as key candidates for advanced electrochemical storage, offering significant safety and stability. Nevertheless, the inherent properties of PEs and interactions at the interface with NCM cathodes are pivotal in influencing SSLMBs' overall performance. This review offers an in-depth examination of PEs, focusing on design strategies that leverage electron-group electronegativity for molecular structure adjustments. Furthermore, it delves into the challenges presented by the interface between PEs and NCM cathodes, including issues like poor interface contact, interface reactions, and elevated resistance. The review also discusses a range of strategies aimed at stabilizing these interfaces, such as applying surface coatings to NCM, optimizing the structure of PEs, and employing in situ polymerization techniques to improve compatibility and battery efficiency. The conclusion offers insights into future developments, highlighting the importance of electron-group optimization and the adoption of effective methods to enhance interface stability and contact, thus advancing the practical implementation of high-performance SSLMBs.

Keywords

electron-group electronegativity / in situ polymerization / NCM interface stability / polymer electrolytes / solid-state lithium metal batteries

Cite this article

Download citation ▾
Zhiyuan Lin, Yunhang Li, Peipei Ding, Chenxiao Lin, Fang Chen, Ruoxin Yu, Yonggao Xia. Polymer Electrolytes for Compatibility With NCM Cathodes in Solid-State Lithium Metal Batteries: Challenges and Strategies. Battery Energy, 2025, 4(5): e20240063 DOI:10.1002/bte2.20240063

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Zhang, H. Zhang, S. Weng, et al., “Multifunctional Solvent Molecule Design Enables High-Voltage Li-Ion Batteries,” Nature Communications 14 (2023): 2211.

[2]

J. Xu, J. Zhang, T. P. Pollard, et al., “Electrolyte Design for Li-Ion Batteries Under Extreme Operating Conditions,” Nature 614 (2023): 694-700.

[3]

Y. Zou, G. Liu, Y. Wang, et al., "Intermolecular Interactions Mediated Nonflammable Electrolyte for High-Voltage Lithium Metal Batteries in Wide Temperature." Advanced Energy Materials 13 (2023): 2300443.

[4]

Z. Piao, H. R. Ren, G. Lu, et al., "Stable Operation of Lithium Metal Batteries With Aggressive Cathode Chemistries at 4.9 V." Angewandte Chemie—International Edition in English 62 (2023): 202300966.

[5]

S. Kalnaus, N. J. Dudney, A. S. Westover, E. Herbert, and S. Hackney, “Solid-State Batteries: The Critical Role of Mechanics,” Science 381 (2023): eabg5998.

[6]

S. Choudhury, S. Stalin, D. Vu, et al., “Solid-State Polymer Electrolytes for High-Performance Lithium Metal Batteries,” Nature Communications 10 (2019): 4398.

[7]

R. Khurana, J. L. Schaefer, L. A. Archer, and G. W. Coates, “Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(Ethylene Oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries,” Journal of the American Chemical Society 136 (2014): 7395-7402.

[8]

J. Zheng and Y.-Y. Hu, “New Insights Into the Compositional Dependence of Li-Ion Transport in Polymer-Ceramic Composite Electrolytes,” ACS Applied Materials & Interfaces 10 (2018): 4113-4120.

[9]

R. Chen, W. Qu, X. Guo, L. Li, and F. Wu, “The Pursuit of Solid-State Electrolytes for Lithium Batteries: From Comprehensive Insight to Emerging Horizons,” Materials Horizons 3 (2016): 487-516.

[10]

H.-J. Ha, E.-H. Kil, Y. H. Kwon, J. Y. Kim, C. K. Lee, and S.-Y. Lee, “UV-Curable Semi-Interpenetrating Polymer Network-Integrated, Highly Bendable Plastic Crystal Composite Electrolytes for Shape-Conformable All-Solid-State Lithium Ion Batteries,” Energy & Environmental Science 5 (2012): 6491.

[11]

A.-L. Ahmad, U. R. Farooqui, and N. A. Hamid, “Synthesis and Characterization of Porous Poly(Vinylidene Fluoride-Co-Hexafluoro Propylene) (PVDF-co-HFP)/Poly(Aniline) (PANI)/Graphene Oxide (GO) Ternary Hybrid Polymer Electrolyte Membrane,” Electrochimica Acta 283 (2018): 842-849.

[12]

Z. Li, R. Yu, S. Weng, Q. Zhang, X. Wang, and X. Guo, “Tailoring Polymer Electrolyte Ionic Conductivity for Production of Low- Temperature Operating Quasi-All-Solid-State Lithium Metal Batteries,” Nature Communications 14 (2023): 482.

[13]

Z. Li, H. Zhang, X. Sun, and Y. Yang, “Mitigating Interfacial Instability in Polymer Electrolyte-Based Solid-State Lithium Metal Batteries With 4 V Cathodes,” ACS Energy Letters 5 (2020): 3244-3253.

[14]

Q. Zhou, J. Ma, S. Dong, X. Li, and G. Cui, "Intermolecular Chemistry in Solid Polymer Electrolytes for High-Energy-Density Lithium Batteries." Advanced Materials 31 (2019): 1902029.

[15]

M. J. Zachman, Z. Tu, S. Choudhury, L. A. Archer, and L. F. Kourkoutis, “Cryo-STEM Mapping of Solid-Liquid Interfaces and Dendrites in Lithium-Metal Batteries,” Nature 560 (2018): 345-349.

[16]

Z. Li, A. Li, H. Zhang, et al., “Interfacial Engineering for Stabilizing Polymer Electrolytes With 4 V Cathodes in Lithium Metal Batteries at Elevated Temperature,” Nano Energy 72 (2020): 104655.

[17]

X. Yang, M. Jiang, X. Gao, et al., “Determining the Limiting Factor of the Electrochemical Stability Window for PEO-Based Solid Polymer Electrolytes: Main Chain or Terminal -OH Group,” Energy & Environmental Science 13 (2020): 1318-1325.

[18]

O. Sheng, J. Zheng, Z. Ju, et al., "In Situ Construction of a LiF-Enriched Interface for Stable All-Solid-State Batteries and Its Origin Revealed by Cryo-TEM." Advanced Materials 32 (2020): 2000223.

[19]

N. V. Kosova and E. T. Devyatkina, “Comparative Study of LiCoO2 Surface Modified With Different Oxides,” Journal of Power Sources 174 (2007): 959-964.

[20]

J. Liang, Y. Sun, Y. Zhao, et al., “Engineering the Conductive Carbon/PEO Interface to Stabilize Solid Polymer Electrolytes for All-Solid-State High Voltage LiCoO2 batteries,” Journal of Materials Chemistry A 8 (2020): 2769-2776.

[21]

J. Qiu, X. Liu, R. Chen, et al., "Enabling Stable Cycling of 4.2 V High-Voltage All-Solid-State Batteries With PEO-Based Solid Electrolyte." Advanced Functional Materials 30 (2020): 1909392.

[22]

Z. Xue, D. He, and X. Xie, “Poly(Ethylene Oxide)-Based Electrolytes for Lithium-Ion Batteries,” Journal of Materials Chemistry A 3 (2015): 19218-19253.

[23]

D. E. Fenton, J. M. Parker, and P. V. Wright, “Complexes of Alkali Metal Ions With Poly(Ethylene Oxide,” Polymer 14 (1973): 589.

[24]

M. A. Abe, F. Sagane, Y. Iriyama, and Z. Ogumi, "Lithium Ion Transfer at the Interface Between Lithium-Ion-Conductive Solid Crystalline Electrolyte and Polymer Electrolyte." Journal of the Electrochemical Society 151 (2004): 1950.

[25]

C. Wang, T. Wang, L. Wang, et al., "Differentiated Lithium Salt Design for Multilayered PEO Electrolyte Enables a High-Voltage Solid-State Lithium Metal Battery." Advanced Science 6 (2019): 1901036.

[26]

Y. Zhao, Y. Bai, W. Li, M. An, Y. Bai, and G. Chen, “Design Strategies for Polymer Electrolytes With Ether and Carbonate Groups for Solid-State Lithium Metal Batteries,” Chemistry of Materials 32 (2020): 6811-6830.

[27]

J. Wan, J. Xie, X. Kong, et al., “Ultrathin, Flexible, Solid Polymer Composite Electrolyte Enabled With Aligned Nanoporous Host for Lithium Batteries,” Nature Nanotechnology 14 (2019): 705-711.

[28]

G. Homann, L. Stolz, K. Neuhaus, M. Winter, and J. Kasnatscheew, "Effective Optimization of High Voltage Solid-State Lithium Batteries by Using Poly(Ethylene Oxide)-Based Polymer Electrolyte With Semi-Interpenetrating Network." Advanced Functional Materials 30 (2020): 2006289.

[29]

Q. Yang, M. Liao, P. Ren, et al., “Dual Functional Composite Solid Electrolyte Constructed by Double-Layer Sulfonated Polyethersulfone (SPES)/Poly(Vinylidene Fluoride-Co-Hexafluoropropylene) (PVDF-HFP) Nanofiber Membrane in High-Performance All-Solid-State Lithium Metal Batteries,” Chemical Engineering Journal 495 (2024): 153448.

[30]

J. Zhang, L. Yue, P. Hu, et al., "Taichi-Inspired Rigid-flexible Coupling Cellulose-Supported Solid Polymer Electrolyte for High-Performance Lithium Batteries." Scientific Reports 4 (2014): 6272.

[31]

Y.-J. Li, C.-Y. Fan, J.-P. Zhang, and X.-L. Wu, “A Promising PMHS/PEO Blend Polymer Electrolyte for All-Solid-State Lithium Ion Batteries,” Dalton Transactions 47 (2018): 14932-14937.

[32]

L. Zhu, J. Li, Y. Jia, et al., “Toward High Performance Solid-State Lithium-Ion Battery With a Promising PEO/PPC blend Solid Polymer Electrolyte,” International Journal of Energy Research 44 (2020): 10168-10178.

[33]

H. Xu, S. Huang, J. Qian, et al., "Safe Solid-State PEO/TPU/LLZO Nano Network Polymer Composite Gel Electrolyte for Solid State Lithium Batteries." Colloids and Surfaces, A: Physicochemical and Engineering Aspects 653 (2022): 130040.

[34]

C. Tao, M.-H. Gao, B.-H. Yin, et al., “A Promising TPU/PEO Blend Polymer Electrolyte for All-Solid-State Lithium Ion Batteries,” Electrochimica Acta 257 (2017): 31-39.

[35]

Y. Su, X. Rong, A. Gao, et al., “Rational Design of a Topological Polymeric Solid Electrolyte for High-Performance All-Solid-State Alkali Metal Batteries,” Nature Communications 13 (2022): 4181.

[36]

X. X. Zeng, Y. X. Yin, N. W. Li, W. C. Du, Y. G. Guo, and L. J. Wan, “Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries,” Journal of the American Chemical Society 138 (2016): 15825-15828.

[37]

W. Fan, N. W. Li, X. Zhang, et al., "A Dual-Salt Gel Polymer Electrolyte With 3D Cross-Linked Polymer Network for Dendrite-Free Lithium Metal Batteries." Advancement of Science 5 (2018): 1800559.

[38]

F. Fu, Y. Zheng, N. Jiang, et al., “A Dual-Salt PEO-Based Polymer Electrolyte With Cross-Linked Polymer Network for High-Voltage Lithium Metal Batteries,” Chemical Engineering Journal 450 (2022): 137776.

[39]

Z. Lin, X. Guo, Y. Yang, M. Tang, Q. Wei, and H. Yu, “Block Copolymer Electrolyte With Adjustable Functional Units for Solid Polymer Lithium Metal Battery,” Journal of Energy Chemistry 52 (2021): 67-74.

[40]

P. Ding, L. Wu, Z. Lin, et al., “Molecular Self-Assembled Ether-Based Polyrotaxane Solid Electrolyte for Lithium Metal Batteries,” Journal of the American Chemical Society 145 (2023): 1548-1556.

[41]

Y. Liu, H. Zou, Z. Huang, et al., “In Situpolymerization of 1,3-dioxane as a Highly Compatible Polymer Electrolyte to Enable the Stable Operation of 4.5 V Li-Metal Batteries,” Energy & Environmental Science 16 (2023): 6110-6119.

[42]

M. Xin, Y. Zhang, Z. Liu, et al., “In Situ-Initiated Poly-1,3-Dioxolane Gel Electrolyte for High-Voltage Lithium Metal Batteries,” Molecules 29 (2024): 2454.

[43]

Y. Q. Mi, W. Deng, C. He, et al., "In Situ Polymerized 1,3-Dioxolane Electrolyte for Integrated Solid-State Lithium Batteries." Angewandte Chemie—International Edition in English 62 (2023): 202218621.

[44]

W. W. Feng, Q. Liu, Y. X. Yin, S. F. Zhang, et al., "Upgrading Traditional Liquid Electrolyte via In Situ Gelation for Future Lithium Metal Batteries." Science Advances 4 (2018): eaat5383.

[45]

Q. Zhao, X. Liu, S. Stalin, K. Khan, and L. A. Archer, “Solid-State Polymer Electrolytes With In-Built Fast Interfacial Transport for Secondary Lithium Batteries,” Nature Energy 4 (2019): 365-373.

[46]

W. Zhou, W. Li, J. Gao, et al., "SnF2-Catalyzed Formation of Polymerized Dioxolane as Solid Electrolyte and Its Thermal Decomposition Behavior." Angewandte Chemie—International Edition 61 (2021): 202114805.

[47]

Y. Wang, L. Wu, Z. Lin, et al., “Hydrogen Bonds Enhanced Composite Polymer Electrolyte for High-Voltage Cathode of Solid-State Lithium Battery,” Nano Energy 96 (2022): 107105.

[48]

K. H. Choi, S. J. Cho, S. H. Kim, Y. H. Kwon, J. Y. Kim, and S. Y. Lee, “Thin, Deformable, and Safety-Reinforced Plastic Crystal Polymer Electrolytes for High-Performance Flexible Lithium-Ion Batteries,” Advanced Functional Materials 24 (2014): 44-52.

[49]

M. Forsyth, A. Tipton, D. Shriver, M. Ratner, and D. Macfarlane, “Ionic Conductivity in Poly(Diethylene Glycol-Carbonate)/Sodium Triflate Complexes,” Solid State Ionics 99 (1997): 257-261.

[50]

J. Motomatsu, H. Kodama, T. Furukawa, and Y. Tominaga, “Dielectric Relaxation Behavior of a Poly(Ethylene Carbonate)-Lithium Bis-(Trifluoromethanesulfonyl) Imide Electrolyte,” Macromolecular Chemistry and Physics 216 (2015): 1660-1665.

[51]

P. Barbosa, L. Rodrigues, M. Silva, and M. Smith, “Interpenetrating Networks Based on Poly(Trimethylene Carbonate) and Poly(Ethylene Oxide) Blends Doped With Lithium Salts,” ECS Transactions 16 (2009): 157-165.

[52]

B. Sun, J. Mindemark, E. V. Morozov, et al., “Ion Transport in Polycarbonate Based Solid Polymer Electrolytes: Experimental and Computational Investigations,” Physical Chemistry Chemical Physics 18 (2016): 9504-9513.

[53]

J. Chai, Z. Liu, J. Ma, et al., "In Situ Generation of Poly (Vinylene Carbonate) Based Solid Electrolyte With Interfacial Stability for LiCoO2 Lithium Batteries." Advancement of Science 4 (2017): 1600377.

[54]

Z. Lin, X. Guo, Z. Wang, et al., “A Wide-Temperature Superior Ionic Conductive Polymer Electrolyte for Lithium Metal Battery,” Nano Energy 73 (2020): 104786.

[55]

Y. Tominaga, K. Yamazaki, and V. Nanthana, “Effect of Anions on Lithium Ion Conduction in Poly(Ethylene Carbonate)-Based Polymer Electrolytes,” Journal of the Electrochemical Society 162 (2015): A3133-A3136.

[56]

B. Sun, J. Mindemark, K. Edström, and D. Brandell, “Polycarbonate-Based Solid Polymer Electrolytes for Li-Ion Batteries,” Solid State Ionics 262 (2014): 738-742.

[57]

J. Zhang, J. Zhao, L. Yue, et al., "Safety-Reinforced Poly(Propylene Carbonate)-Based All-Solid-State Polymer Electrolyte for Ambient-temperature Solid Polymer Lithium Batteries." Advanced Energy Materials 5 (2015): 1501082.

[58]

Z. Lin, X. Guo, R. Zhang, et al., “Molecular Structure Adjustment Enhanced Anti-Oxidation Ability of Polymer Electrolyte for Solid-State Lithium Metal Battery,” Nano Energy 98 (2022): 107330.

[59]

M. Burjanadze, Y. Karatas, N. Kaskhedikar, et al., “Salt-In-Polymer Electrolytes for Lithium Ion Batteries Based on Organo-Functionalized Polyphosphazenes and Polysiloxanes,” Zeitschrift für Physikalische Chemie 224 (2010): 1439-1473.

[60]

S. Wang and K. Min, “Solid Polymer Electrolytes of Blends of Polyurethane and Polyether Modified Polysiloxane and Their Ionic Conductivity,” Polymer 51 (2010): 2621-2628.

[61]

M. Shibata, T. Kobayashi, R. Yosomiya, and M. Seki, “Polymer Electrolytes Based on Blends of Poly(Ether Urethane) and Polysiloxanes,” European Polymer Journal 36 (2000): 485-490.

[62]

Y. Kang, Y.-H. Seo, D. W. Kim, and C. Lee, “Effect of Poly(Ethylene Glycol) Dimethyl Ether Plasticizer on Ionic Conductivity of Cross-Linked Poly[Siloxane-G-Oligo(Ethylene Oxide)] Solid Polymer Electrolytes,” Macromolecular Research 12 (2004): 431-436.

[63]

Q. Hu, S. Osswald, R. Daniel, et al., “Graft Copolymer-Based Lithium-Ion Battery for High-Temperature Operation,” Journal of Power Sources 196 (2011): 5604-5610.

[64]

K. Nagaoka, H. Naruse, I. Shinohara, and M. Watanabe, “High Ionic Conductivity in Poly(Dimethyl Siloxane-co-Ethylene Oxide) Dissolving Lithium Perchlorate,” Journal of Polymer Science: Polymer Letters Edition 22 (1984): 659-663.

[65]

A. M. Rocco, C. P. da Fonseca, and R. P. Pereira, “A Polymeric Solid Electrolyte Based on a Binary Blend of Poly(Ethylene Oxide), Poly(Methyl Vinyl Ether-Maleic Acid) and LiClO4,” Polymer 43 (2002): 3601-3609.

[66]

Z. Zhang, D. Sherlock, R. West, R. West, K. Amine, and L. J. Lyons, “Cross-Linked Network Polymer Electrolytes Based on a Polysiloxane Backbone With Oligo(Oxyethylene) Side Chains: Synthesis and Conductivity,” Macromolecules 36 (2003): 9176-9180.

[67]

B. Oh, D. Vissers, Z. Zhang, R. West, H. Tsukamoto, and K. Amine, “New Interpenetrating Network Type Poly(Siloxane-G-Ethylene Oxide) Polymer Electrolyte for Lithium Battery,” Journal of Power Sources 119-121 (2003): 442-447.

[68]

P. Han, Y. Zhu, and J. Liu, “An All-Solid-State Lithium Ion Battery Electrolyte Membrane Fabricated by Hot-Pressing Method,” Journal of Power Sources 284 (2015): 459-465.

[69]

Q. Pan, D. M. Smith, H. Qi, S. Wang, and C. Y. Li, “Hybrid Electrolytes With Controlled Network Structures for Lithium Metal Batteries,” Advanced Materials 27 (2015): 5995-6001.

[70]

X. Li, Y. Zheng, and C. Y. Li, “Dendrite-Free, Wide Temperature Range Lithium Metal Batteries Enabled by Hybrid Network Ionic Liquids,” Energy Storage Materials 29 (2020): 273-280.

[71]

K. Mu, D. Wang, W. Dong, et al., "Hybrid Crosslinked Solid Polymer Electrolyte via In-Situ Solidification Enables High-Performance Solid-State Lithium Metal Batteries." Advanced Materials 35 (2023): 2304686.

[72]

M. Forsyth, J. I. A. Z. E. N. G. Sun, D. R. Macfarlane, and A. J. Hill, "Compositional Dependence of Free Volume in PAN/LiCF3SO3 Polymer-in-Salt Electrolytes and the Effect on Ionic Conductivity." Journal of Polymer Science Part B: Polymer Physics 15 (2000): 342-350.

[73]

H. Gao, N. S. Grundish, Y. Zhao, A. Zhou, and J. B. Goodenough, “Formation of Stable Interphase of Polymer-in-Salt Electrolyte in All-Solid-State Lithium Batteries,” Energy Material Advances 2021 (2021): 1-10.

[74]

P. Hu, Y. Duan, D. Hu, et al., “Rigid-Flexible Coupling High Ionic Conductivity Polymer Electrolyte for an Enhanced Performance of LiMn2O4/Graphite Battery at Elevated Temperature,” ACS Applied Materials & Interfaces 7 (2015): 4720-4727.

[75]

Y. Cui, J. Chai, H. Du, et al., “Facile and Reliable In Situ Polymerization of Poly(Ethyl Cyanoacrylate)-Based Polymer Electrolytes Toward Flexible Lithium Batteries,” ACS Applied Materials & Interfaces 9 (2017): 8737-8741.

[76]

Y.-S. Kim, Y.-G. Cho, D. Odkhuu, N. Park, and H.-K. Song, “A Physical Organogel Electrolyte: Characterized by In Situ Thermo-irreversible Gelation and Single-Ion-Predominent Conduction,” Scientific Reports 3 (2013): 1-6.

[77]

Q. Zhou, J. Zhang, and G. Cui, "Rigid-Flexible Coupling Polymer Electrolytes Toward High-Energy Lithium Batteries." Macromolecular Materials Engineering 303 (2018): 1800337.

[78]

D. Zhou, Y.-B. He, R. Liu, et al., “In Situ Synthesis of a Hierarchical All-Solid-State Electrolyte Based on Nitrile Materials for High-Performance Lithium-Ion Batteries.” Advanced Energy Materials 5 (2015): 1500353.

[79]

P. Hu, J. Chai, Y. Duan, Z. Liu, G. Cui, and L. Chen, “Progress in Nitrile-Based Polymer Electrolytes for High Performance Lithium Batteries,” Journal of Materials Chemistry A 4 (2016): 10070-10083.

[80]

O. V. Bushkova, V. M. Zhukovsky, B. I. Lirova, and A. L. Kruglyashov, “Fast Ionic Transport in Solid Polymer Electrolytes Based on Acrylonitrile Copolymers,” Solid State Ionics 119 (1999): 217-222.

[81]

P. J. Alarco, Y. Abu-Lebdeh, A. Abouimrane, and M. Armand, “The Plastic-Crystalline Phase of Succinonitrile as a Universal Matrix for Solid-State Ionic Conductors,” Nature Materials 3 (2004): 476-481.

[82]

A. Ferry, L. Edman, M. Forsyth, D. R. MacFarlane, and Sun, “NMR and Raman Studies of a Novel Fast-Ion-Conducting Polymer-in-Salt Electrolyte Based on LiCF3SO3 and PAN,” Electrochimica Acta 45 (2000): 1237-1242.

[83]

P. Wang, J. Chai, Z. Zhang, et al., “An Intricately Designed Poly(Vinylene Carbonate-Acrylonitrile) Copolymer Electrolyte Enables 5 V Lithium Batteries,” Journal of Materials Chemistry A 7 (2019): 5295-5304.

[84]

F. Fu, Y. Liu, C. Sun, et al., “Unveiling and Alleviating Chemical “Crosstalk” of Succinonitrile Molecules in Hierarchical Electrolyte for High-Voltage Solid-State Lithium Metal Batteries.” Energy & Environmental Science 6 (2022): 12367.

[85]

N. Xu, H. Zhou, Y. Liao, G. Li, M. Xu, and W. Li, “A Facile Strategy to Improve the Cycle Stability of 4.45 V LiCoO2 Cathode in Gel Electrolyte System via Succinonitrile Additive Under Elevated Temperature,” Solid State Ionics 341 (2019): 115049.

[86]

D. Zhang, Y. Liu, Z. Sun, et al., “Eutectic-Based Polymer Electrolyte With the Enhanced Lithium Salt Dissociation for High-Performance Lithium Metal Batteries.” Angewandte Chemie—International Edition in English 62 (2023): 202310006.

[87]

C. Zhang, H. Zheng, L. Lin, et al., “Deep Eutectic Solvent-Based Solid Polymer Electrolytes for High-Voltage and High-Safety Lithium Metal Batteries.” Advanced Energy Materials (2024): 2401324.

[88]

Y. Zhu, F. Wang, L. Liu, S. Xiao, Z. Chang, and Y. Wu, “Composite of a Nonwoven Fabric With Poly(Vinylidene Fluoride) as a Gel Membrane of High Safety for Lithium Ion Battery,” Energy & Environmental Science 6 (2013): 618-624.

[89]

T. Michot, A. Nishimoto, and M. Watanabe, “Electrochemical Properties of Polymer Gel Electrolytes Based on Poly(Vinylidene Fluoride) Copolymer and Homopolymer,” Electrochimica Acta 45 (2000): 1347-1360.

[90]

X. Zhang, S. Wang, C. Xue, et al., “Self-Suppression of Lithium Dendrite in All-Solid-State Lithium Metal Batteries With Poly(Vinylidene Difluoride)-Based Solid Electrolytes.” Advanced Materials 31 (2019): 1806082.

[91]

X. Zhang, J. Han, X. Niu, et al., “High Cycling Stability for Solid-State Li Metal Batteries via Regulating Solvation Effect in Poly(Vinylidene Fluoride)-Based Electrolytes,” Batteries & Supercaps 3 (2020): 876-883.

[92]

P. Ding, S. Zhao, Z. Lin, et al., “Local Fluorinated Functional Units Enhance Li+ Transport in Acrylate-Based Polymer Electrolytes for Lithium Metal Batteries,” Nano Energy 129 (2024): 110006.

[93]

K. Gao, X. Hu, C. Dai, and T. Yi, “Crystal Structures of Electrospun PVDF Membranes and Its Separator Application for Rechargeable Lithium Metal Cells,” Materials Science and Engineering: B 131 (2006): 100-105.

[94]

H. Wu, Y. Cao, H. Su, and C. Wang, “Tough Gel Electrolyte Using Double Polymer Network Design for the Safe, Stable Cycling of Lithium Metal Anode,” Angewandte Chemie—International Edition 57 (2018): 1361-1365.

[95]

W. Huang, S. Wang, X. Zhang, et al., “Universal F4-Modified Strategy on Metal-Organic Framework to Chemical Stabilize PVDF-HFP as Quasi-Solid-State Electrolyte.” Advanced Materials 35 (2023): 2310147.

[96]

T. Tang, W. Yang, Z. Shen, et al., “Compressible Polymer Composites With Enhanced Dielectric Temperature Stability.” Advanced Materials 35 (2023): 2209958.

[97]

C. M. Costa, J. L. Gomez Ribelles, S. Lanceros-Méndez, G. B. Appetecchi, and B. Scrosati, “Poly(Vinylidene Fluoride)-Based, Co-Polymer Separator Electrolyte Membranes for Lithium-Ion Battery Systems,” Journal of Power Sources 245 (2014): 779-786.

[98]

S. M. Seidel, S. Jeschke, P. Vettikuzha, and H. D. Wiemhöfer, “PVDF-HFP/Ether-Modified Polysiloxane Membranes Obtained via Airbrush Spraying as Active Separators for Application in Lithium Ion Batteries,” Chemical Communications 51 (2015): 12048-12051.

[99]

Y. Jing, Q. Lv, Y. Chen, et al., “Synergistic Coupling Among Mg2B2O5, Polycarbonate and N,N-Dimethylformamide Enhances the Electrochemical Performance of PVDF-HFP-Based Solid Electrolyte,” Journal of Energy Chemistry 94 (2024): 158-168.

[100]

Y. Liu, D. Lin, Z. Liang, J. Zhao, K. Yan, and Y. Cui, “Lithium-Coated Polymeric Matrix as a Minimum Volume-Change and Dendrite-Free Lithium Metal Anode.” Nature Communications 7 (2016): 10992.

[101]

H. Zhao, N. Deng, J. Ju, Z. Li, W. Kang, and B. Cheng, “Novel Configuration of Heat-Resistant Gel Polymer Electrolyte With Electrospun Poly (Vinylidene Fluoride-Co-Hexafluoropropylene) and Poly-M-Phenyleneisophthalamide Composite Separator for High-Safety Lithium-Ion Battery,” Materials Letters 236 (2019): 101-105.

[102]

Q. Ye, H. Liang, S. Wang, et al., “Fabricating a PVDF Skin for PEO-Based SPE to Stabilize the Interface Both at Cathode and Anode for Li-Ion Batteries,” Journal of Energy Chemistry 70 (2022): 356-362.

[103]

W. Liu, X. Zhang, F. Wu, and Y. Xiang, “A Study on PVDF-HFP Gel Polymer Electrolyte for Lithium-Ion Batteries,” IOP Conference Series on Materials Science and Engineering 213 (2017): 012036.

[104]

S. K. Singh, D. Dutta, and R. K. Singh, “Enhanced Structural and Cycling Stability of Li2CuO2-coated LiNi0.33Mn0.33Co0.33O2 Cathode With Flexible Ionic Liquid-Based Gel Polymer Electrolyte for Lithium Polymer Batteries,” Electrochimica Acta 343 (2020): 136122.

[105]

X. Xiong, R. Zhi, Q. Zhou, et al., “A Binary PMMA/PVDF Blend Film Modified Substrate Enables a Superior Lithium Metal Anode for Lithium Batteries,” Materials Advances 2 (2021): 4240-4245.

[106]

Y. Wang and D. Rochefort, “Organic Ionic Plastic Crystal/PVDF Composites Prepared by Solution Casting.” The Journal of Physical Chemistry C 128 (2024): 16343-16352.

[107]

D. Saikia and A. Kumar, “Ionic Conduction in P(VDF-HFP)/PVDF-(PC + DEC)-LiClO4 Polymer Gel Electrolytes,” Electrochimica Acta 49 (2004): 2581-2589.

[108]

J. Shi, Y. Yang, and H. Shao, “Co-Polymerization and Blending Based PEO/PMMA/P(VDF-HFP) Gel Polymer Electrolyte for Rechargeable Lithium Metal Batteries,” Journal of Membrane Science 547 (2018): 1-10.

[109]

T. Lu, Y. Zhou, X. Zeng, S. Hao, and Q. Wei, “Study of the Ion Transport Properties of Succinonitrile Plasticized Poly(Vinylidene Fluoride)-Based Solid Polymer Electrolytes,” Materials Letters 360 (2024): 135912.

[110]

D. Chen, M. Zhu, P. Kang, et al., “Self-Enhancing Gel Polymer Electrolyte by In Situ Construction for Enabling Safe Lithium Metal Battery.” Advancement of Science 9 (2021): 2103663.

[111]

X. Yin, S. Zhao, Z. Lin, et al., “A Propanesultone-Based Polymer Electrolyte for High-Energy Solid-State Lithium Batteries With Lithium-Rich Layered Oxides,” Journal of Materials Chemistry A 11 (2023): 19118-19127.

[112]

Z. Lin, C. Lin, F. Chen, R. Yu, G. Guo, and Y. Xia, “The Electron-Withdrawing Properties of Butanesultone-Based Polymer Electrolytes Facilitate Stable Operation at 4.6 V for Solid-State Lithium Batteries With NCM811 Cathodes,” Energy Storage Materials 71 (2024): 103651.

[113]

X. Wu, Y. Zhang, and S. Peng, “An Ambient-Temperature Superionic Conductive, Electrochemically Stable, Plastic Cross-Linked Polymer Electrolyte for Lithium Metal Battery,” Journal of Applied Polymer Science 141 (2024): 55234.

[114]

T. Xu, S. Huang, Y. Min, and Q. Xu, “Gelatin Network Reinforced Poly (Vinylene Carbonate-Acrylonitrile) Based Composite Solid Electrolyte for All-Solid-State Lithium Metal Batteries,” Chemical Engineering Journal 475 (2023): 146409.

[115]

J. Park, H. Seong, C. Yuk, et al., “Design of Fluorinated Elastomeric Electrolyte for Solid-State Lithium Metal Batteries Operating at Low Temperature and High Voltage.” Advanced Materials 36 (2024): 2403191.

[116]

Z. Lin, F. Chen, X. Yin, et al., “Self-Degrading Functional Unit Introduction for Anti-Oxidation Ability Enhancement of a Poly(Vinyl Ethylene Carbonate) Electrolyte,” Journal of Materials Chemistry A 12 (2024): 13435-13445.

[117]

N. Xu, Y. Zhao, M. Ni, et al., “In-Situ Cross-Linked F- and P-Containing Solid Polymer Electrolyte for Long-Cycling and High-Safety Lithium Metal Batteries With Various Cathode Materials,” Angewandte Chemie—International Edition 63 (2024): 202404400.

[118]

Y.-W. Song, S.-J. Park, H. Lee, et al., “Thin-Film Type In Situ polymerized Composite Solid Electrolyte for Solid-State Lithium Metal Batteries,” Journal of Materials Chemistry A 12 (2024): 9594-9605.

[119]

X. Huang, S. Huang, T. Wang, et al., “Flexible, Transparent, and Wafer-Scale Artificial Synapse Array Based on TiOx/Ti3C2Tx Film for Neuromorphic Computing,” Advanced Functional Materials 33 (2023): 2300683.

[120]

J. Zhu, R. Zhao, J. Zhang, et al., “In-Situ Cross-linked F- and P-Containing Solid Polymer Electrolyte for Long-Cycling and High-Safety Lithium Metal Batteries With Various Cathode Materials.” Angewandte Chemie—International Edition 63 (2024): 202400303.

[121]

J. Han, M. J. Lee, J. H. Min, et al., “Fluorine-Containing Phase-Separated Polymer Electrolytes Enabling High-Energy Solid-State Lithium Metal Batteries.” Advanced Functional Materials 34 (2024): 2310801.

[122]

Y. Liu, P. Wang, Z. Yang, et al., “Lignin Derived Ultrathin All-Solid Polymer Electrolytes With 3D Single-Ion Nanofiber Ionic Bridge Framework for High Performance Lithium Batteries.” Advanced Materials 36 (2024): 2400970.

[123]

S. Qi, M. Li, Y. Gao, et al., “Enabling Scalable Polymer Electrolyte With Dual-Reinforced Stable Interface for 4.5 V Lithium-Metal Batteries.” Advanced Materials 35 (2023): 2304951.

[124]

J. Wang, Z. Zhang, J. Han, et al., “Interfacial and Cycle Stability of Sulfide All-Solid-State Batteries With Ni-Rich Layered Oxide Cathodes.” Nano Energy 100 (2022): 107528.

[125]

K. Nie, Y. Hong, J. Qiu, et al., “Interfaces Between Cathode and Electrolyte in Solid State Lithium Batteries: Challenges and Perspectives,” Frontiers in Chemistry 6 (2018): 616.

[126]

A. Song, W. Zhang, H. Guo, et al., “Review on the Features and Progress of Silicon Anodes-Based Solid-State Batteries.” Advanced Energy Materials 13 (2023): 2301464.

[127]

X. Bai, F. Xie, Z. Zhang, et al., “Prospects and Strategies for Single-Crystal NCM Materials to Solve All-Solid-State Battery Cathode Interface Problems.” Advanced Energy Materials (2024): 241336.

[128]

Y. Yusim, D. F. Hunstock, A. Mayer, et al., “Investigation of the Stability of the Poly(Ethylene Oxide)|LiNi1-x-y CoxMnyO2 Interface in Solid-State Batteries.” Advanced Materials Interfaces 11 (2023): 2300532.

[129]

H. J. Guo, Y. Sun, Y. Zhao, et al., “Surface Degradation of Single-crystalline Ni-rich Cathode and Regulation Mechanism by Atomic Layer Deposition in Solid-State Lithium Batteries.” Angewandte Chemie—International Edition 61 (2022): 202211626.

[130]

X. Wang, Y. Song, X. Jiang, et al., “Constructing Interfacial Nanolayer Stabilizes 4.3 V High-Voltage All-Solid-State Lithium Batteries With PEO-Based Solid-State Electrolyte.” Advanced Functional Materials 32 (2022): 153448.

[131]

H. J. Guo, H. X. Wang, Y. J. Guo, et al., “Dynamic Evolution of a Cathode Interphase Layer at the Surface of LiNi0.5Co0.2Mn0.3O2 in Quasi-Solid-State Lithium Batteries,” Journal of the American Chemical Society 142 (2020): 20752-20762.

[132]

H. Zhai, T. Gong, B. Xu, et al., “Stabilizing Polyether Electrolyte with a 4 V Metal Oxide Cathode by Nanoscale Interfacial Coating,” ACS Applied Materials & Interfaces 11 (2019): 28774-28780.

[133]

X.-D. Zhang, J.-L. Shi, J.-Y. Liang, et al., “An Effective LiBO2 Coating to Ameliorate the Cathode/Electrolyte Interfacial Issues of LiNi0.6Co0.2Mn0.2O2 in Solid-State Li Batteries,” Journal of Power Sources 426 (2019): 242-249.

[134]

Y. Dai, Z. Hou, G. Luo, et al., "Improving the Interfacial Stability of Ultrahigh-Nickel Cathodes With PEO-Based Electrolytes by Targeted Chemical Reactions." Chemical Science 1 (2024): 12964-12972.

[135]

J. Liang, S. Hwang, S. Li, et al., “Stabilizing and Understanding the Interface Between Nickel-Rich Cathode and PEO-Based Electrolyte by Lithium Niobium Oxide Coating for High-Performance All-Solid-State Batteries,” Nano Energy 78 (2020): 105107.

[136]

X. Chen, Y. Li, Y. Lu, et al., “LATP-Coated LiNi0.8Co0.1Mn0.1O2 Cathode With Compatible Interface With Ultrathin PVDF-Reinforced PEO-LLZTO Electrolyte for Stable Solid-State Lithium Batteries,” Journal of Materiomics 10 (2024): 682-693.

[137]

J. Qiu, L. Yang, G. Sun, X. Yu, H. Li, and L. Chen, “A Stabilized PEO-Based Solid Electrolyte via a Facile Interfacial Engineering Method for a High Voltage Solid-State Lithium Metal Battery,” Chemical Communications 56 (2020): 5633-5636.

[138]

L. P. Wang, X. D. Zhang, T. S. Wang, et al., "Ameliorating the Interfacial Problems of Cathode and Solid-State Electrolytes by Interface Modification of Functional Polymers." Advanced Energy Materials 8 (2018): 1801528.

[139]

Q. Li, X. Zhang, J. Peng, et al., “Engineering a High-Voltage Durable Cathode/Electrolyte Interface for All-Solid-State Lithium Metal Batteries via In Situ Electropolymerization,” ACS Applied Materials & Interfaces 14 (2022): 21018-21027.

[140]

J. Bae, X. Zhang, X. Guo, and G. Yu, “A General Strategy of Anion-Rich High-Concentration Polymeric Interlayer for High-Voltage, All-Solid-State Batteries,” Nano Letters 21 (2021): 1184-1191.

[141]

H. Diao, M. Jia, N. Zhao, and X. Guo, “LiNi0.6Co0.2Mn0.2O2 Cathodes Coated With Dual-Conductive Polymers for High-Rate and Long-Life Solid-State Lithium Batteries,” ACS Applied Materials & Interfaces 14 (2022): 24929-24937.

[142]

X. Lin, J. Yu, M. B. Effat, et al., "Ultrathin and Non-Flammable Dual-Salt Polymer Electrolyte for High-Energy-Density Lithium-Metal Battery." Advanced Functional Materials 31 (2021): 2010261.

[143]

S. Choudhury, Z. Tu, A. Nijamudheen, et al., “Stabilizing Polymer Electrolytes in High-Voltage Lithium Batteries,” Nature Communications 10 (2019): 3091.

[144]

Z. Cheng, J. Xiang, L. Yuan, et al., “Multifunctional Additive Enables a “5H” PEO Solid Electrolyte for High-Performance Lithium Metal Batteries,” ACS Applied Materials & Interfaces 16 (2024): 21924-21931.

[145]

S. H. Kim, N. Park, W. Bo Lee, and J. H. Park, "Functional Sulfate Additive-Derived Interfacial Layer for Enhanced Electrochemical Stability of PEO-Based Polymer Electrolytes." Small 20 (2024): 2309160.

[146]

A. Manthiram, X. Yu, and S. Wang, “Lithium Battery Chemistries Enabled by Solid-State Electrolytes,” Nature Reviews Materials 2 (2017): 16103.

[147]

E. M. Masoud, A. A. El-Bellihi, W. A. Bayoumy, and M. A. Mousa, “Organic-Inorganic Composite Polymer Electrolyte Based on PEO-LiClO4 and nano-Al2O3 Filler for Lithium Polymer Batteries: Dielectric and Transport Properties,” Journal of Alloys and Compounds 575 (2013): 223-228.

[148]

P. Yang, X. Gao, X. Tian, et al., “Upgrading Traditional Organic Electrolytes Toward Future Lithium Metal Batteries: A Hierarchical Nano-SiO2-Supported Gel Polymer Electrolyte,” ACS Energy Letters 5 (2020): 1681-1688.

[149]

J. Yin, X. Xu, S. Jiang, Y. Lei, and Y. Gao, "Bi-Nanofillers Integrated Into PEO-Based Electrolyte for High-performance Solid-state Li Metal Batteries." Journal of Power Sources 550 (2022): 232139.

[150]

S. Wang, Q. Sun, W. Peng, et al., “Ameliorating the Interfacial Issues of All-Solid-State Lithium Metal Batteries by Constructing Polymer/Inorganic Composite Electrolyte,” Journal of Energy Chemistry 58 (2021): 85-93.

[151]

T. Jiang, P. He, G. Wang, Y. Shen, C. W. Nan, and L. Z. Fan, “Solvent-Free Synthesis of Thin, Flexible, Nonflammable Garnet-Based Composite Solid Electrolyte for All-Solid-State Lithium Batteries,” Advanced Energy Materials 10 (2020): 1903376.

[152]

S.-Y. Li, W.-P. Wang, S. Xin, J. Zhang, and Y.-G. Guo, “A Facile Strategy to Reconcile 3D Anodes and Ceramic Electrolytes for Stable Solid-State Li Metal Batteries,” Energy Storage Materials 32 (2020): 458-464.

[153]

Z. Cheng, H. Pan, C. Li, et al., “An in Situ Solidifying Strategy Enabling High-Voltage All-Solid-State Li-Metal Batteries Operating at Room Temperature,” Journal of Materials Chemistry A 8 (2020): 25217-25225.

[154]

J. Ma, G. Zhong, P. Shi, et al., “Constructing a Highly Efficient “Solid-Polymer-Solid” Elastic Ion Transport Network in Cathodes Activates the Room Temperature Performance of All-Solid-State Lithium Batteries,” Energy & Environmental Science 15 (2022): 1503-1511.

[155]

Y. Yan, J. Ju, S. Dong, et al., "In Situ Polymerization Permeated Three-Dimensional Li(+)-Percolated Porous Oxide Ceramic Framework Boosting All Solid-State Lithium Metal Battery." Advancement of Science 8 (2021): 2003887.

[156]

M. Cui, S. Fu, S. Yuan, et al., “Dual Interface Compatibility Enabled via Composite Solid Electrolyte With High Transference Number for Long-Life All-Solid-State Lithium Metal Batteries,” Small 20 (2024): 2307505.

[157]

B. Li, Q. Su, C. Liu, et al., "Stable Interface of a High-Energy Solid-State Lithium Metal Battery via a Sandwich Composite Polymer Electrolyte." Journal of Power Sources 496 (2021): 229835.

[158]

K. Wen, X. Tan, T. Chen, S. Chen, and S. Zhang, “Fast Li-Ion Transport and Uniform Li-Ion Flux Enabled by a Double-Layered Polymer Electrolyte for High Performance Li Metal Battery,” Energy Storage Materials 32 (2020): 55-64.

[159]

S. Chen, S. Ma, Z. Liu, et al., “Structurally Integrated Asymmetric Polymer Electrolyte With Stable Janus Interface Properties for High-Voltage Lithium Metal Batteries,” Journal of Colloid and Interface Science 638 (2023): 595-605.

[160]

X. Tan, X. Ke, K. Wang, K. Zou, Y. Zeng, and R. Xiao, “Dual-Layer Composite Solid Polymer Electrolytes With Janus Properties for Interface Modification of Solid State Lithium Metal Batteries,” Polymer 289 (2023): 126496.

[161]

Z. Xiong, Z. Wang, W. Zhou, et al., “4.2V Polymer All-Solid-State Lithium Batteries Enabled by High-Concentration PEO Solid Electrolytes,” Energy Storage Materials 57 (2023): 171-179.

[162]

J. Pan, Y. Zhang, J. Wang, et al., "A Quasi-Double-Layer Solid Electrolyte With Adjustable Interphases Enabling High-Voltage Solid-State Batteries." Advanced Materials 34 (2021): 2107183.

[163]

S. Mu, W. Huang, W. Sun, et al., “Heterogeneous Electrolyte Membranes Enabling Double-Side Stable Interfaces for Solid Lithium Batteries,” Journal of Energy Chemistry 60 (2021): 162-168.

[164]

F. Liu, Y. Cheng, X. Zuo, et al., “Gradient Trilayer Solid-State Electrolyte With Excellent Interface Compatibility for High-Voltage Lithium Batteries,” Chemical Engineering Journal 441 (2022): 136077.

[165]

Z. Wang, J. Tan, J. Cui, et al., “A Novel Asymmetrical Multilayered Composite Electrolyte for High-Performance Ambient-Temperature All-Solid-State Lithium Batteries,” Journal of Materials Chemistry A 12 (2024): 4231-4239.

[166]

Q. Liu, L. Wang, and X. He, "Toward Practical Solid-State Polymer Lithium Batteries by In Situ Polymerization Process: A Review." Advanced Energy Materials 13 (2023): 2300798.

[167]

Y. Wang, J. Ju, S. Dong, et al., "Facile Design of Sulfide-Based All Solid-State Lithium Metal Battery: In Situ Polymerization Within Self-Supported Porous Argyrodite Skeleton." Advanced Functional Materials 31 (2021): 2101523.

[168]

H. Peng, T. Long, J. Peng, et al., "Molecular Design for In-Situ Polymerized Solid Polymer Electrolytes Enabling Stable Cycling of Lithium Metal Batteries." Advanced Energy Materials 14 (2024): 2400428.

[169]

S. Zhang, F. Sun, X. Du, et al., “In Situ-Polymerized Lithium Salt as a Polymer Electrolyte for High-Safety Lithium Metal Batteries,” Energy & Environmental Science 16 (2023): 2591-2602.

[170]

K. Guo, J. Wang, Z. Shi, Y. Wang, X. Xie, and Z. Xue, "One-Step In Situ Polymerization: A Facile Design Strategy for Block Copolymer Electrolytes." Angewandte Chemie—International Edition 62 (2023): 202213606.

[171]

Y. Chen, Y. Cui, S. Wang, et al., "Durable and Adjustable Interfacial Engineering of Polymeric Electrolytes for Both Stable Ni-Rich Cathodes and High-Energy Metal Anodes." Advanced Materials 35 (2023): 2300982.

[172]

M. Bai, X. Tang, M. Zhang, et al., “An In-Situ Polymerization Strategy for Gel Polymer Electrolyte Si∥Ni-Rich Lithium-Ion Batteries,” Nature Communications 15 (2024): 5375.

RIGHTS & PERMISSIONS

2025 The Author(s). Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

36

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/