NaHSO3 as a Key Component in Developing Enhanced Performance Electrolytes for All-Iron Redox Flow Batteries

Alejandro Concheso , Daniel Barreda , Zoraida González , Patricia Álvarez , Rosa Menéndez , Clara Blanco , Victoria G. Rocha , Ricardo Santamaría

Battery Energy ›› 2025, Vol. 4 ›› Issue (5) : e20240059

PDF
Battery Energy ›› 2025, Vol. 4 ›› Issue (5) : e20240059 DOI: 10.1002/bte2.20240059
RESEARCH ARTICLE

NaHSO3 as a Key Component in Developing Enhanced Performance Electrolytes for All-Iron Redox Flow Batteries

Author information +
History +
PDF

Abstract

Redox flow batteries (RFBs) are attractive electrochemical systems for large-scale energy storage. Despite the most developed ones being those based on vanadium, the search for new chemistries is essential to overcome several problems associated with this metal identified as a critical raw material. All-iron redox flow battery (A-IRFB) is an interesting device due to iron abundance and worldwide distribution. However, the poor performance of its negative half-cell, due to the sluggish plating/stripping processes related to the Fe2+/Fe0 redox pair, negatively impacts its energy efficiency and long-term performance. Here, it is demonstrated that the addition of a low concentration of NaHSO3 (10 mM), as a novel additive, to an electrolyte formulation based on 0.5 M FeCl2, 3 M NaCl, and 10 mM citric acid (H3Cit) remarkably improves the electrochemical behavior of the negative half-cell. The enhanced performance can be explained as the additive guarantees a low oxygen solution content (reductant agent), promotes the plating/stripping reactions (improving the kinetics of the Fe0 deposit through the formation of a FeHSO3+ complex), and diminishes the contribution of the competitive hydrogen evolution reaction. The use of this key additive opens up a promising scenario for the development of A-IRFBs with significantly enhanced electrochemical performance, thus boosting their potential commercial development.

Keywords

all-iron redox flow battery / electrochemical performance / iron-based aqueous electrolyte

Cite this article

Download citation ▾
Alejandro Concheso, Daniel Barreda, Zoraida González, Patricia Álvarez, Rosa Menéndez, Clara Blanco, Victoria G. Rocha, Ricardo Santamaría. NaHSO3 as a Key Component in Developing Enhanced Performance Electrolytes for All-Iron Redox Flow Batteries. Battery Energy, 2025, 4(5): e20240059 DOI:10.1002/bte2.20240059

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

a) L. H. Thaller, United States Patent, 3, 996, 064, 1976 b) P. O'Donnell, R. F. Gahn, and W. Pfeiffer, Photovoltaic Specialist Conf. 1976, https://ntrs.nasa.gov/api/citations/19770005579/downloads/19770005579.pdf.

[2]

L. H. Thaller, Intersoc. Energy Conversion Eng. Conf, 1979, https://ntrs.nasa.gov/api/citations/19790018334/downloads/19790018334.pdf.

[3]

L. H. Thaller, United States Patent, 4, 159,366, 1979.

[4]

W. Sun, M. Zhang, J. Li, and C. Peng, “Solar-Driven Catalytic Urea Oxidation for Environmental Remediation and Energy Recovery,” Chemsuschem 15 (2022): e202101798.

[5]

Y. Zeng, PhD Thesis, Hong Kong University of Science and Technology, 2017, https://lbezone.hkust.edu.hk/rse/?p=43584.

[6]

L. W. Hruska and R. F. Savinell, “Investigation of Factors Affecting Performance of the Iron-Redox Battery,” Journal of the Electrochemical Society 128 (1981): 18-25.

[7]

M. Skyllas-Kazacos, M. Rychcik, R. G. Robins, A. G. Fane, and M. A. Green, “New All-Vanadium Redox Flow Cell,” Journal of the Electrochemical Society 133 (1986): 1057-1058.

[8]

H. Hu, M. Han, J. Liu, et al., “Development Status, Challenges, and Perspectives of Key Components and Systems of All-Vanadium Redox Flow Batteries,” Future Batteries 4 (2024): 100008.

[9]

L. Pan, Z. Guo, H. Li, et al., “High-Performance Porous Electrodes for Flow Batteries: Improvements of Specific Surface Areas and Reaction Kinetics,” ChemElectroChem 11 (2024): e202400460.

[10]

a) European Commission, 2023 (1) Fifth List of Critical Raw Materials for the EU, https://eur-lex.europa.eu/resource.html?uri=cellar:903d35cc-c4a2-11ed-a05c-01aa75ed71a1.0001.02/DOC_2&format=PDF and (2)https://scrreen.eu/crms-2023/; US Geological Survey, 2024, b) US Geological Survey Mineral Commodity Summaries, 2024, p.105, p.197, https://pubs.usgs.gov/periodicals/mcs2024/mcs2024.pdf.

[11]

E. Sánchez-Díez, E. Ventosa, M. Guarnieri, et al., “Redox Flow Batteries: Status and Perspective Towards Sustainable Stationary Energy Storage,” Journal of Power Sources 481 (2021): 228804.

[12]

J. Luo, B. Hu, M. Hu, Y. Zhao, and T. L. Liu, “Status and Prospects of Organic Redox Flow Batteries Toward Sustainable Energy Storage,” ACS Energy Letters 4 (2019): 2220-2240.

[13]

Y. H. Wen, H. M. Zhang, P. Qian, et al., “A Study of the Fe(III)/Fe(II)-Triethanolamine Complex Redox Couple for Redox Flow Battery Application,” Electrochimica Acta 51 (2006): 3769-3775.

[14]

a) Y. H. Wen, H. M. Zhang, P. Qian, et al., “Studies on Iron (Fe3+∕Fe2+)-Complex/Bromine (Br2∕Br) Redox Flow Cell in Sodium Acetate Solution,” Journal of the Electrochemical Society 153 (2006): A929-A934. b) K. Gong, F. Xu, J. B. Grunewald, et al., “All-Soluble All-Iron Aqueous Redox-Flow Battery,” ACS Energy Letters 1 (2016): 89-93.

[15]

K. L. Hawthorne, J. S. Wainright, and R. F. Savinell, “Studies of Iron-Ligand Complexes for an All-Iron Flow Battery Application,” Journal of the Electrochemical Society 161 (2014): A1662-A1671.

[16]

K. L. Hawthorne, T. J. Petek, M. A. Miller, J. S. Wainright, and R. F. Savinell, “An Investigation Into Factors Affecting the Iron Plating Reaction for an All-Iron Flow Battery,” Journal of the Electrochemical Society 162 (2015): A108-A113.

[17]

J. Liu, D. Dong, A. L. Caro, et al., “Aqueous Electrolytes Reinforced by Mg and Ca Ions for Highly Reversible Fe Metal Batteries,” ACS Central Science 8 (2022): 729-740.

[18]

I. Gimenez-Garcia and A. Forner-Cuenca, “Elucidating the Influence of Electrolyte Additives on Iron Electroplating Performance,” Electrochimica Acta 498 (2024): 144509.

[19]

L. García-Alcalde, Z. González, A. Concheso, C. Blanco, and R. Santamaría, “Impact of Electrochemical Cells Configuration on a Reliable Assessment of Active Electrode Materials for Vanadium Redox Flow Batteries,” Electrochimica Acta 432 (2022): 141225.

[20]

J. Noack, M. Berkers, J. Ortner, and K. Pinkwart, “The Influence of Some Electrolyte Additives on the Electrochemical Performance of Fe/Fe2+ Redox Reactions for Iron/Iron Redox Flow Batteries,” Journal of the Electrochemical Society 168 (2021): 040529.

[21]

European Parliament and Council of the European Union, Directive 95/2/EC of 20 February 1995 on Food Additives Other Than Colors and Sweeteners, 1995, http://data.europa.eu/eli/dir/1995/2/oj.

[22]

G. J. Pomrink, B. K. Fillipo, E. R. Carver, and P. R. Burgmayer, United States Patent, 1997, US5683588A.

[23]

S. Guerra-Rodríguez, N. Cediel, E. Rodríguez, and J. Rodríguez-Chueca, “Photocatalytic Activation of Sulfite Using Fe(II) and Fe(III) for Enterococcus Sp. Inactivation in Urban Wastewater,” Chemical Engineering Journal 408 (2021): 127326.

[24]

M. S. Chao, “The Sulfite/Dithionite Couple: Its Standard Potential and Pourbaix Diagram,” Journal of the Electrochemical Society 133 (1986): 954-955.

[25]

S. Wu, L. Shen, Y. Lin, K. Yin, and C. Yang, “Sulfite-Based Advanced Oxidation and Reduction Processes for Water Treatment,” Chemical Engineering Journal 414 (2021): 128872.

[26]

D. Zhou, L. Chen, J. Li, and F. Wu, “Transition Metal Catalyzed Sulfite Auto-Oxidation Systems for Oxidative Decontamination in Waters: A State-of-the-Art Minireview,” Chemical Engineering Journal 346 (2018): 726-738.

[27]

Y. Zhang, J. Zhou, C. Li, S. Guo, and G. Wang, “Reaction Kinetics and Mechanism of Iron(II)-Induced Catalytic Oxidation of Sulfur(IV) During Wet Desulfurization,” Industrial & Engineering Chemistry Research 51 (2012): 1158-1165.

[28]

X. Chen, W. Miao, Y. Yang, S. Hao, and S. Mao, “Aeration-Assisted Sulfite Activation With Ferrous for Enhanced Chloramphenicol Degradation,” Chemosphere 238 (2020): 124599.

[29]

A. L. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications (John Wiley & Sons, Inc, 2001), 2nd edition.

[30]

A. K. Manohar, K. M. Kim, E. Plichta, M. Hendrickson, S. Rawlings, and S. R. Narayanan, “A High Efficiency Iron-Chloride Redox Flow Battery for Large-Scale Energy Storage,” Journal of the Electrochemical Society 163 (2016): A5118-A5125.

[31]

P. Patnaik, Handbook of Inorganic Chemicals (McGraw-Hill, 2003).

[32]

J. G. Ibanez, C.-S. Choi, and R. S. Becker, “Aqueous Redox Transition Metal Complexes for Electrochemical Applications as a Function of pH,” Journal of the Electrochemical Society 134 (1987): 3083-3089.

[33]

a) C. E. Evans and Y. Song, United States Patent, 2019, US10403919 B2 b) C. E. Evans and Y. Song, United States Patent, 2020, US10586996 B2.

[34]

L. C. Königsberger, E. Königsberger, P. M. May, and G. T. Hefter, “Complexation of Iron(III) and Iron(II) by Citrate. Implications for Iron Speciation in Blood Plasma,” Journal of Inorganic Biochemistry 78 (2000): 175-184.

[35]

P. Vukosav, M. Mlakar, and V. Tomišić, “Revision of Iron(III)-Citrate Speciation in Aqueous Solution. Voltammetric and Spectrophotometric Studies,” Analytica Chimica Acta 745 (2012): 85-91.

RIGHTS & PERMISSIONS

2025 The Author(s). Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

39

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/