Viologen as an Electrolyte Additive for Extreme Fast Charging of Lithium-Ion Batteries

Murugavel Kathiresan , Abishek Kumar Lakshmi , Natarajan Angulakshmi , Sara Garcia-Ballesteros , Federico Bella , A. Manuel Stephan

Battery Energy ›› 2025, Vol. 4 ›› Issue (5) : e20240039

PDF
Battery Energy ›› 2025, Vol. 4 ›› Issue (5) : e20240039 DOI: 10.1002/bte2.20240039
RESEARCH ARTICLE

Viologen as an Electrolyte Additive for Extreme Fast Charging of Lithium-Ion Batteries

Author information +
History +
PDF

Abstract

Although lithium-ion batteries (LIBs) have found an unprecedented place among portable electronic devices owing to their attractive properties such as high energy density, single cell voltage, long shelf-life, etc., their application in electric vehicles still requires further improvements in terms of power density, better safety, and fast-charging ability (i.e., 15 min charging) for long driving range. The challenges of fast charging of LIBs have limitations such as low lithium-ion transport in the bulk and solid electrode/electrolyte interfaces, which are mainly influenced by the ionic conductivity of the electrolyte. Therefore, electrolyte engineering plays a key role in enhancing the fast-charging capability of LIBs. Here, we synthesize a novel propionic acid-based viologen that contains a 4,4′-bipyridinium unit and a terminal carboxylic acid group with positive charges that confine PF6 anions and accelerate the migration of lithium ions due to electrostatic repulsion, thus increasing the overall rate capability. The LiFePO4/Li cells with 0.25% of viologen added to the electrolyte show a discharge capacity of 110 mAh g‒1 at 6C with 95% of capacity retention even after 500 cycles. The added viologen not only enhances the electrochemical properties, but also significantly reduces the self-extinguishing time.

Keywords

electrolyte / fast-charge / lithium-ion battery / lithium-metal battery / viologen

Cite this article

Download citation ▾
Murugavel Kathiresan, Abishek Kumar Lakshmi, Natarajan Angulakshmi, Sara Garcia-Ballesteros, Federico Bella, A. Manuel Stephan. Viologen as an Electrolyte Additive for Extreme Fast Charging of Lithium-Ion Batteries. Battery Energy, 2025, 4(5): e20240039 DOI:10.1002/bte2.20240039

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

T. Kim, W. Song, D.-Y. Son, L. K. Ono, and Y. Qi, “Lithium-Ion Batteries: Outlook on Present, Future, and Hybridized Technologies,” Journal of Materials Chemistry A 7, no. 7 (2019): 2942-2964.

[2]

J. B. Goodenough and Y. Kim, “Challenges for Rechargeable Li Batteries,” Chemistry of Materials 22, no. 3 (2010): 587-603.

[3]

B. Dunn, H. Kamath, and J.-M. Tarascon, “Electrical Energy Storage for the Grid: A Battery of Choices,” Science 334, no. 6058 (2011): 928-935.

[4]

J. B. Goodenough and H. Gao, “A Perspective on the Li-Ion Battery,” Science China Chemistry 62, no. 12 (2019): 1555-1556.

[5]

L. Qiao, X. Judez, T. Rojo, M. Armand, and H. Zhang, “Polymer Electrolytes for Sodium Batteries,” Journal of the Electrochemical Society 167, no. 7 (2020): 070534.

[6]

O. Eroglu, M. S. Kiai, and H. Kizil, “Performance Enhancement of Li-S Battery With the Anatase Nano Structured Fe Doped TiO2 as a Robust Interlayer,” Journal of Alloys and Compounds 838 (2020): 155607.

[7]

E. Fedeli, O. Garcia-Calvo, T. Thieu, et al., “Nanocomposite Solid Polymer Electrolytes Based on Semi-Interpenetrating Hybrid Polymer Networks for High Performance Lithium Metal Batteries,” Electrochimica Acta 353 (2020): 136481.

[8]

Z. Li, N. Qiao, J. Nie, et al., “NiO/NiFe2O4 Nanocubes Derived From Prussian Blue as Anode Materials for Li-Ion Batteries,” Materials Letters 275 (2020): 128077.

[9]

Z. Wang, H. Zhou, C. Meng, et al., “Enhancing Ion Transport: Function of Ionic Liquid Decorated MOFs in Polymer Electrolytes for All-Solid-State Lithium Batteries,” ACS Applied Energy Materials 3, no. 5 (2020): 4265-4274.

[10]

K. Chelladurai, P. Venkatachalam, S. Rengapillai, W.-R. Liu, C.-H. Huang, and S. Marimuthu, “Effect of Polyaniline on Sulfur/Sepiolite Composite Cathode for Lithium-Sulfur Batteries,” Polymers 12, no. 4 (2020): 755.

[11]

J. Wu, X. Wu, W. Wang, et al., “Dense PVDF-Type Polymer-In-Ceramic Electrolytes for Solid State Lithium Batteries,” RSC Advances 10, no. 38 (2020): 22417-22421.

[12]

Z. Wang, H. Zhou, C. Meng, L. Zhang, Y. Cai, and A. Yuan, “Anion-Immobilized and Fiber-Reinforced Hybrid Polymer Electrolyte for Advanced Lithium-Metal Batteries,” ChemElectroChem 7, no. 12 (2020): 2660-2664.

[13]

M. Liu, Y. Wang, M. Li, et al., “A New Composite Gel Polymer Electrolyte Based on Matrix of PEGDA With High Ionic Conductivity for Lithium-Ion Batteries,” Electrochimica Acta 354 (2020): 136622.

[14]

G. Chen, K. Zhang, Y. Liu, et al., “Flame-Retardant Gel Polymer Electrolyte and Interface for Quasi-Solid-State Sodium Ion Batteries,” Chemical Engineering Journal 401 (2020): 126065.

[15]

X. Zhang, J.-C. Daigle, and K. Zaghib, “Comprehensive Review of Polymer Architecture for All-Solid-State Lithium Rechargeable Batteries,” Materials 13, no. 11 (2020): 2488.

[16]

J. Cui, Z. Zhou, M. Jia, et al., “Solid Polymer Electrolytes With Flexible Framework of SiO2 Nanofibers for Highly Safe Solid Lithium Batteries,” Polymers 12, no. 6 (2020): 1324.

[17]

X.-B. Cheng, R. Zhang, C.-Z. Zhao, and Q. Zhang, “Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review,” Chemical Reviews 117, no. 15 (2017): 10403-10473.

[18]

W. Xu, J. Wang, F. Ding, et al., “Lithium Metal Anodes for Rechargeable Batteries,” Energy & Environmental Science 7, no. 2 (2014): 513-537.

[19]

J.-M. Tarascon and M. Armand, “Issues and Challenges Facing Rechargeable Lithium Batteries,” Nature 414, no. 6861 (2001): 359-367.

[20]

S. N. Lauro, J. N. Burrow, and C. B. Mullins, “Restructuring the Lithium-Ion Battery: A Perspective on Electrode Architectures,” eScience 3 (2023): 100152.

[21]

X. Zhang, B. Peng, L. Zhao, et al., “NASICON-Structured LiZr2(PO4)3 Surface Modification Improves Ionic Conductivity and Structural Stability of LiCoO2 for a Stable 4.6 V Cathode,” ACS Applied Materials & Interfaces 14 (2022): 16204-16213.

[22]

G. Wang, J. Li, L. Yu, J. Gao, and G. Zhang, “Hierarchical Carbon Nanosheet Assembly With SiOx Incorporation and Nitrogen Doping Achieves Enhanced Lithium Ion Storage Performance,” Advanced Energy and Sustainability Research 2 (2021): 2100026.

[23]

J. Gao, Y. Li, L. Shi, J. Li, and G. Zhang, “Rational Design of Hierarchical Nanotubes Through Encapsulating CoSe2 Nanoparticles Into MoSe2/C Composite Shells With Enhanced Lithium and Sodium Storage Performance,” ACS Applied Materials & Interfaces 10 (2018): 20635-20642.

[24]

S. Lou, F. Zhang, C. Fu, et al., “Interface Issues and Challenges in All-Solid-State Batteries: Lithium, Sodium, and Beyond,” Advanced Materials 33 (2021): 2000721.

[25]

C. Li, L. Liu, J. Kang, et al., “Pristine MOF and COF Materials for Advanced Batteries,” Energy Storage Materials 31 (2020): 115-134.

[26]

F. Wu, G.-T. Kim, T. Diemant, et al., “Reducing Capacity and Voltage Decay of Co-Free Li1.2Ni0.2Mn0.6O2 as Positive Electrode Material for Lithium Batteries Employing an Ionic Liquid-Based Electrolyte,” Advanced Energy Materials 10 (2020): 2001830.

[27]

S. A. Ahmed, T. Pareek, S. Dwivedi, M. Badole, and S. Kumar, “LiSn2(PO4)3-Based Polymer-In-Ceramic Composite Electrolyte With High Ionic Conductivity for All-Solid-State Lithium Batteries,” Journal of Solid State Electrochemistry 24 (2020): 2407-2417.

[28]

K. Xu, “Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries,” Chemical Reviews 104, no. 10 (2004): 4303-4418.

[29]

T. Kawamura, A. Kimura, M. Egashira, S. Okada, and J.-I. Yamaki, “Thermal Stability of Alkyl Carbonate Mixed-Solvent Electrolytes for Lithium Ion Cells,” Journal of Power Sources 104, no. 2 (2002): 260-264.

[30]

J. Foropoulos, Jr. and D. D. Desmarteau, “Synthesis, Properties, and Reactions of Bis((Trifluoromethyl)Sulfonyl) Imide (CF3SO2)2NH,” Inorganic Chemistry 23, no. 23 (1984): 3720-3723.

[31]

X. Wang, J. Sun, C. Feng, et al., “Lithium Bis(Oxalate)Borate Crosslinked Polymer Electrolytes for High-Performance Lithium Batteries,” Journal of Energy Chemistry 55 (2021): 228-235.

[32]

K. Zhou, S. Wang, S. Zhang, F. Kang, and B. Li, “Investigating the Increased-Capacity Mechanism of Porous Carbon Materials in Lithium-Ion Batteries,” Journal of Materials Chemistry A 8, no. 28 (2020): 14031-14042.

[33]

E. R. Logan and J. R. Dahn, “Electrolyte Design for Fast-Charging Li-Ion Batteries,” Trends in Chemistry 2, no. 4 (2020): 354-366.

[34]

D. Lv, Y. Shao, T. Lozano, et al., “Failure Mechanism for Fast-Charged Lithium Metal Batteries With Liquid Electrolytes,” Advanced Energy Materials 5, no. 3 (2015): 1400993.

[35]

A. Nyman, T. G. Zavalis, R. Elger, M. Behm, and G. Lindbergh, “Analysis of the Polarization in a Li-Ion Battery Cell by Numerical Simulations,” Journal of the Electrochemical Society 157, no. 11 (2010): A1236-A1246.

[36]

K. G. Gallagher, S. E. Trask, C. Bauer, et al., “Optimizing Areal Capacities Through Understanding the Limitations of Lithium-Ion Electrodes,” Journal of the Electrochemical Society 163, no. 2 (2016): A138-A149.

[37]

S. Ahmed, I. Bloom, A. N. Jansen, et al., “Enabling Fast Charging - A Battery Technology Gap Assessment,” Journal of Power Sources 367 (2017): 250-262.

[38]

Y. Liu, Y. Zhu, and Y. Cui, “Challenges and Opportunities Towards Fast-Charging Battery Materials,” Nature Energy 4, no. 7 (2019): 540-550.

[39]

C. Gerbaldi, J. R. Nair, M. A. Kulandainathan, et al., “Innovative High Performing Metal Organic Framework (MOF)-Laden Nanocomposite Polymer Electrolytes for All-Solid-State Lithium Batteries,” Journal of Materials Chemistry A: Materials for Energy and Sustainability 2, no. 26 (2014): 9948-9954.

[40]

N. Kamaya, K. Homma, Y. Yamakawa, et al., “A Lithium Superionic Conductor,” Nature Materials 10, no. 9 (2011): 682-686.

[41]

L. Zhou, A. Assoud, Q. Zhang, X. Wu, and L. F. Nazar, “New Family of Argyrodite Thioantimonate Lithium Superionic Conductors,” Journal of the American Chemical Society 141, no. 48 (2019): 19002-19013.

[42]

K. Liu, Z. Wang, L. Shi, S. Jungsuttiwong, and S. Yuan, “Ionic Liquids for High Performance Lithium Metal Batteries,” Journal of Energy Chemistry 59 (2021): 320-333.

[43]

H. Qi, Y. Ren, S. Guo, et al., “High-Voltage Resistant Ionic Liquids for Lithium-Ion Batteries,” ACS Applied Materials & Interfaces 12, no. 1 (2020): 591-600.

[44]

C. M. Efaw, Q. Wu, N. Gao, et al., “Localized High-Concentration Electrolytes Get More Localized Through Micelle-Like Structures,” Nature Materials 22, no. 12 (2023): 1531-1539.

[45]

X. Cao, H. Jia, W. Xu, and J.-G. Zhang, “Review-Localized High-Concentration Electrolytes for Lithium Batteries,” Journal of the Electrochemical Society 168, no. 1 (2021): 010522.

[46]

L. Suo, Y.-S. Hu, H. Li, M. Armand, and L. Chen, “A New Class of Solvent-in-Salt Electrolyte for High-Energy Rechargeable Metallic Lithium Batteries,” Nature Communications 4 (2013): 1481.

[47]

L. E. Camacho-Forero, T. W. Smith, and P. B. Balbuena, “Effects of High and Low Salt Concentration in Electrolytes at Lithium-Metal Anode Surfaces,” Journal of Physical Chemistry C 121, no. 1 (2017): 182-194.

[48]

H. Zhang, G. G. Eshetu, X. Judez, C. Li, L. M. Rodriguez-Martínez, and M. Armand, “Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives,” Angewandte Chemie International Edition 57, no. 46 (2018): 15002-15027.

[49]

S. S. Zhang, “A Review on Electrolyte Additives for Lithium-Ion Batteries,” Journal of Power Sources 162, no. 2 SPEC. ISS (2006): 1379-1394.

[50]

L. Wang, Q. Wang, W. Jia, S. Chen, P. Gao, and J. Li, “Li Metal Coated With Amorphous Li3PO4 via Magnetron Sputtering for Stable and Long-Cycle Life Lithium Metal Batteries,” Journal of Power Sources 342 (2017): 175-182.

[51]

J. Zhao, L. Liao, F. Shi, et al., “Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability,” Journal of the American Chemical Society 139, no. 33 (2017): 11550-11558.

[52]

H. Xiang, P. Shi, P. Bhattacharya, et al., “Enhanced Charging Capability of Lithium Metal Batteries Based on Lithium Bis(Trifluoromethanesulfonyl)Imide-Lithium Bis(Oxalato)Borate Dual-Salt Electrolytes,” Journal of Power Sources 318 (2016): 170-177.

[53]

M. Kathiresan, B. Ambrose, N. Angulakshmi, D. E. Mathew, D. Sujatha, and A. M. Stephan, “Viologens: A Versatile Organic Molecule for Energy Storage Applications,” Journal of Materials Chemistry A 9, no. 48 (2021): 27215-27233.

[54]

K. R. Prakasha, K. Madasamy, M. Kathiresan, and A. S. Prakash, “Ethylviologen Hexafluorophosphate as Electrolyte Additive for High-Voltage Nickel-Rich Layered Cathode,” Journal of Physical Chemistry C 123, no. 47 (2019): 28604-28610.

[55]

N. Angulakhsmi, B. Ambrose, S. Sathya, et al., “Enhanced Electrochemical Performance of Hybrid Solid Polymer Electrolytes Encompassing Viologen for All-Solid-State Lithium Polymer Batteries,” ACS Materials Au 3, no. 5 (2023): 528-539.

[56]

S. Suriyakumar, K. Madasamy, M. Kathiresan, M. H. Alkordi, and A. M. Stephan, “Improved Cycling Performance of Lithium-Sulfur Cell Through Supramolecular Interactions,” Journal of Physical Chemistry C 122, no. 49 (2018): 27843-27849.

[57]

Y. Yamada, K. Furukawa, K. Sodeyama, et al., “Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries,” Journal of the American Chemical Society 136, no. 13 (2014): 5039-5046.

[58]

N. Matsuoka, H. Kamine, Y. Natsume, and A. Yoshino, “Moderately Concentrated Acetonitrile-Containing Electrolytes With High Ionic Conductivity for Durability-Oriented Lithium-Ion Batteries,” ChemElectroChem 8, no. 16 (2021): 3095-3104.

[59]

J.-H. Park, W. Park, J. H. Kim, et al., “Close-Packed Poly(Methyl Methacrylate) Nanoparticle Arrays-Coated Polyethylene Separators for High-Power Lithium-Ion Polymer Batteries,” Journal of Power Sources 196, no. 16 (2011): 7035-7038.

[60]

J.-Y. Sohn, J.-S. Im, J. Shin, and Y.-C. Nho, “PVDF-HFP/PMMA-Coated PE Separator for Lithium Ion Battery,” Journal of Solid State Electrochemistry 16, no. 2 (2012): 551-556.

[61]

E. P. Roth and C. J. Orendorff, “How Electrolytes Influence Battery Safety,” Interface Magazine 21, no. 2 (2012): 45-49.

[62]

J. Wang, F. Lin, H. Jia, J. Yang, C. W. Monroe, and Y. Nuli, “Towards a Safe Lithium-Sulfur Battery With a Flame-Inhibiting Electrolyte and a Sulfur-Based Composite Cathode,” Angewandte Chemie International Edition 53, no. 38 (2014): 10099-10104.

[63]

K. Xu, S. Zhang, J. L. Allen, and T. R. Jow, “Nonflammable Electrolytes for Li-Ion Batteries Based on a Fluorinated Phosphate,” Journal of the Electrochemical Society 149, no. 8 (2002): A1079-A1082.

[64]

S. S. Zhang, K. Xu, and T. R. Jow, “A Thermal Stabilizer for LIPF6-Based Electrolytes of Li-Ion Cells,” Electrochemical and Solid-State Letters 5, no. 9 (2002): A206-A208.

[65]

G. Nagasubramanian and K. Fenton, “Reducing Li-Ion Safety Hazards through Use of Non-Flammable Solvents and Recent Work at Sandia National Laboratories,” Electrochimica Acta 101 (2013): 3-10.

[66]

H. F. Xiang, H. Y. Xu, Z. Z. Wang, and C. H. Chen, “Dimethyl Methylphosphonate (DMMP) as an Efficient Flame Retardant Additive for the Lithium-Ion Battery Electrolytes,” Journal of Power Sources 173, no. 1 (2007): 562-564.

[67]

J. Zheng, M. H. Engelhard, D. Mei, et al., “Electrolyte Additive Enabled Fast Charging and Stable Cycling Lithium Metal Batteries,” Nature Energy 2, no. 3 (2017): 17012.

[68]

P. Bai, J. Li, F. R. Brushett, and M. Z. Bazant, “Transition of Lithium Growth Mechanisms in Liquid Electrolytes,” Energy & Environmental Science 9, no. 10 (2016): 3221-3229.

[69]

T. C. Hyams, J. Go, and T. M. Devine, “Corrosion of Aluminum Current Collectors in High-Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles,” Journal of the Electrochemical Society 154, no. 8 (2007): C390-C396.

[70]

S. Zhang, M. S. Ding, and T. R. Jow, “Self-Discharge of Li/LixMn2O4 Batteries in Relation to Corrosion of Aluminum Cathode Substrates,” Journal of Power Sources 102, no. 1-2 (2001): 16-20.

[71]

J. W. Braithwaite, A. Gonzales, G. Nagasubramanian, et al., “Corrosion of Lithium-Ion Battery Current Collectors,” Journal of the Electrochemical Society 146, no. 2 (1999): 448-456.

[72]

L. Cong, J. Liu, M. Armand, et al., “Role of Perfluoropolyether-Based Electrolytes in Lithium Metal Batteries: Implication for Suppressed Al Current Collector Corrosion and the Stability of Li Metal/Electrolytes Interfaces,” Journal of Power Sources 380 (2018): 115-125.

[73]

B. Philippe, R. Dedryvère, M. Gorgoi, H. Rensmo, D. Gonbeau, and K. Edström, “Improved Performances of Nanosilicon Electrodes Using the Salt Lifsi: A Photoelectron Spectroscopy Study,” Journal of the American Chemical Society 135, no. 26 (2013): 9829-9842.

[74]

L. Zhang, L. Chai, L. Zhang, et al., “Synergistic Effect Between Lithium Bis(Fluorosulfonyl)Imide (LiFSI) and Lithium Bis-Oxalato Borate (LiBOB) Salts in LiPF6-Based Electrolyte for High-Performance Li-Ion Batteries,” Electrochimica Acta 127 (2014): 39-44.

[75]

M. Zhao, S. Kariuki, H. D. Dewald, et al., “Electrochemical Stability of Copper in Lithium-Ion Battery Electrolytes,” Journal of the Electrochemical Society 147, no. 8 (2000): 2874-2879.

[76]

J. Shu, M. Shui, F. Huang, et al., “Comparative Study on Surface Behaviors of Copper Current Collector in Electrolyte for Lithium-Ion Batteries,” Electrochimica Acta 56, no. 8 (2011): 3006-3014.

[77]

D. Aurbach, I. Weissman, A. Zaban, and P. Dan, “On the Role of Water Contamination in Rechargeable Li Batteries,” Electrochimica Acta 45, no. 7 (1999): 1135-1140.

[78]

G. Ning, R. E. White, and B. N. Popov, “A Generalized Cycle Life Model of Rechargeable Li-Ion Batteries,” Electrochimica Acta 51, no. 10 (2006): 2012-2022.

[79]

S. Dai, J. Chen, Y. Ren, et al., “Electrochemical Corrosion Behavior of the Copper Current Collector in the Electrolyte of Lithium-Ion Batteries,” International Journal of Electrochemical Science 12, no. 11 (2017): 10589-10598.

[80]

G. Ning, B. Haran, and B. N. Popov, “Capacity Fade Study of Lithium-Ion Batteries Cycled at High Discharge Rates,” Journal of Power Sources 117, no. 1-2 (2003): 160-169.

[81]

S.-T. Myung, Y. Sasaki, S. Sakurada, Y.-K. Sun, and H. Yashiro, “Electrochemical Behavior of Current Collectors for Lithium Batteries in Non-Aqueous Alkyl Carbonate Solution and Surface Analysis by Tof-Sims,” Electrochimica Acta 55, no. 1 (2009): 288-297.

[82]

A. M. Eldesoky, M. A. Diab, A. A. El-Bindary, A. Z. El-Sonbati, and H. A. Seyam, “Some Antipyrine Derivatives as Corrosion Inhibitors for Copper in Acidic Medium: Experimental and Quantum Chemical Molecular Dynamics Approach,” Journal of Materials and Environmental Science 6, no. 8 (2015): 2148-2165.

[83]

A. S. Fouda, A. M. Eldesoky, A. Z. El-Sonbati, and S. F. Salam, “Prop-2-en-1-One Derivatives as Corrosion Inhibitors for Copper in 1 M HNO3,” International Journal of Electrochemical Science 9, no. 4 (2014): 1867-1891.

[84]

N. N. Sinha, J. C. Burns, and J. R. Dahn, “Storage Studies on Li/Graphite Cells and the Impact of So-Called SEI-Forming Electrolyte Additives,” Journal of the Electrochemical Society 160, no. 4 (2013): A709-A714.

[85]

J. Z. Lu, B. Han, C. Y. Cui, C. J. Li, and K. Y. Luo, “Electrochemical and Pitting Corrosion Resistance of AISI 4145 Steel Subjected to Massive Laser Shock Peening Treatment With Different Coverage Layers,” Optics & Laser Technology 88 (2017): 250-262.

[86]

W. Li, Y. Li, M. Fang, et al., “The Facile in Situ Preparation and Characterization of C/FeOF/FeF3 Nanocomposites as Lib Cathode Materials,” Ionics 24, no. 6 (2018): 1561-1569.

RIGHTS & PERMISSIONS

2025 The Author(s). Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

33

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/