Biomass-based functional separators for rechargeable batteries

Yongbo Xia , Lei Wang , Xiaoru Li , Tingting Liao , Jichao Zhai , Xiaohui Wang , Kaifu Huo

Battery Energy ›› 2024, Vol. 3 ›› Issue (5) : 20240015

PDF
Battery Energy ›› 2024, Vol. 3 ›› Issue (5) : 20240015 DOI: 10.1002/bte2.20240015
REVIEW

Biomass-based functional separators for rechargeable batteries

Author information +
History +
PDF

Abstract

The global transition toward sustainable energy sources has prompted a paradigm shift in the field of energy storage. The separator is an important component in rechargeable batteries, which facilitates the rapid passage of ions and ensures the safety and efficiency of the electrochemical process by preventing direct contact between the anode and cathode. Traditional polyolefin-based separators induce environmental concerns due to their nonbiodegradable nature. Biomass-based separators derived from renewable sources such as plant fibers, agricultural waste, and biopolymers have emerged as promising alternatives to traditional polymer separators. In this review, we summarize the current state and development of biomass-based separators for high-performance batteries, including innovative manufacturing techniques, novel biomass materials, functionalization strategies, performance evaluation methods, and potential applications. The review also delves into the environmental impact and sustainability analysis of biomass-based separators, offering insights into the potential of biomass as the most sustainable resource for future energy storage solutions. This review could provide a holistic understanding of the advancements and potential of biomass-based separators, shedding light on the path toward sustainable and efficient energy storage based on biomass-derived separators.

Keywords

agricultural waste / biomass molecular / functional separators / rechargeable batteries

Cite this article

Download citation ▾
Yongbo Xia, Lei Wang, Xiaoru Li, Tingting Liao, Jichao Zhai, Xiaohui Wang, Kaifu Huo. Biomass-based functional separators for rechargeable batteries. Battery Energy, 2024, 3(5): 20240015 DOI:10.1002/bte2.20240015

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Peter SC. Reduction of CO2 to chemicals and fuels: a solution to global warming and energy crisis. ACS Energy Lett. 2018;3:1557-1561.

[2]

Liu W-J, Jiang H, Yu H-Q. Emerging applications of biochar-based materials for energy storage and conversion. Energy Environ Sci. 2019;12:1751-1779.

[3]

Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol. 2017;12:194-206.

[4]

Wang L, Shang J, Huang Q, et al. Smoothing the sodium-metal anode with a self-regulating alloy interface for high-energy and sustainable sodium-metal batteries. Adv Mater. 2021;33:2102802.

[5]

Li S, Zhu W, Tang Q, et al. Mini review on cellulose-based composite separators for lithium-ion batteries: recent progress and perspectives. Energy Fuels. 2021;35:12938-12947.

[6]

Costa CM, Lee Y-H. Kim J-H, Lee S-Y. Lanceros-Méndez S. Recent advances on separator membranes for lithium-ion battery applications: from porous membranes to solid electrolytes. Energy Storage Mater. 2019;22:346-375.

[7]

Yang Y, Wang W, Meng G, Zhang J. Function-directed design of battery separators based on microporous polyolefin membranes. J Mater Chem A. 2022;10:14137-14170.

[8]

Jo C-H, Myung S-T. Efficient recycling of valuable resources from discarded lithium-ion batteries. J Power Sources. 2019;426:259-265.

[9]

Song J, Ryou M-H. Son B, et al. Co-polyimide-coated polyethylene separators for enhanced thermal stability of lithium ion batteries. Electrochim Acta. 2012;85:524-530.

[10]

Yu J, Dong N, Liu B, Tian G, Qi S, Wu D. A newly-developed heat-resistance polyimide microsphere coating to enhance the thermal stability of commercial polyolefin separators for advanced lithium-ion battery. Chem Eng J. 2022;442:136314.

[11]

Jana KK, Lue SJ, Huang A, Soesanto JF, Tung K-L. Separator membranes for high energy-density batteries. ChemBioEng Rev. 2018;5:346-371.

[12]

Zhang K, Chen H, Huang H, Wei Z, Zhao Y. Water-soluble ammonium polyphosphate synchronously enables mechanically robust and flame-retardant cellulose composite separator for high safety lithium batteries. J Power Sources. 2023;558:232627.

[13]

Heidari AA, Mahdavi H. Recent development of polyolefin-based microporous separators for Li−ion batteries: a review. Chem Rec. 2020;20:570-595.

[14]

Zhang P, Ma Y, He K, Deng B. A high-performance biomass carbon separator loaded with MnO2 designed for lithium sulfur batteries. Solid State Sci. 2022;132:106998.

[15]

Su Z, Yu L, Cui L, et al. Reconstruction of cellulose intermolecular interactions from hydrogen bonds to dynamic covalent networks enables a thermo-processable cellulosic plastic with tunable strength and toughness. ACS Nano. 2023;17:21420-21431.

[16]

Gonçalves R, Lizundia E, Silva MM, Costa CM, Lanceros-Méndez S. Mesoporous cellulose nanocrystal membranes as battery separators for environmentally safer lithium-ion batteries. ACS Appl Energy Mater. 2019;2:3749-3761.

[17]

Jin C, Nai J, Sheng O, et al. Biomass-based materials for green lithium secondary batteries. Energy Environ Sci. 2021;14:1326-1379.

[18]

Liu J, Yuan H, Cheng XB, et al. A review of naturally derived nanostructured materials for safe lithium metal batteries. Mater Today Nano. 2019;8:100049.

[19]

Bao J, Song X, Tian F, et al. Biomass separators as a “lifesaver”for safe and long-life lithium metal batteries. Chemistry. 2023;29:e202302236.

[20]

Klemm D, Heublein B, Fink H-P. Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. ChemInform. 2005;36:3358-3393.

[21]

Habibi Y, Lucia LA, Rojas OJ. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev. 2010;110:3479-3500.

[22]

Li T, Chen C, Brozena AH, et al. Developing fibrillated cellulose as a sustainable technological material. Nature. 2021;590:47-56.

[23]

Goldberg RN, Schliesser J, Mittal A, et al. A thermodynamic investigation of the cellulose allomorphs: cellulose(am), cellulose iβ(cr), cellulose ii(cr), and cellulose iii(cr). J Chem Thermodyn. 2015;81:184-226.

[24]

Shao Y, Xia Q, Dong L, et al. Selective production of arenes via direct lignin upgrading over a niobium-based catalyst. Nat Commun. 2017;8:16104.

[25]

Islam S, Bhuiyan MAR, Islam MN. Chitin and chitosan: structure, properties and applications in biomedical engineering. J Polym Environ. 2017;25:854-866.

[26]

Pérez S, Bertoft E. The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch -Stärke. 2010;62:389-420.

[27]

Wang T, He D, Yao H, Guo X, Sun B, Wang G. Development of proteins for high-performance energy storage devices: opportunities, challenges, and strategies. Adv Energy Mater. 2022;12:2202568.

[28]

Guhados G, Wan W, Hutter JL. Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir. 2005;21:6642-6646.

[29]

Hsieh YC, Yano H, Nogi M, Eichhorn SJ. An estimation of the young’s modulus of bacterial cellulose filaments. Cellulose. 2008;15:507-513.

[30]

Eichhorn SJ, Young RJ. The Young’s modulus of a microcrystalline cellulose. Cellulose. 2001;8:197-207.

[31]

Li Z, Chen C, Mi R, et al. A strong, tough, and scalable structural material from fast-growing bamboo. Adv Mater. 2020;32:1906308.

[32]

Chen H, Wang Z, Feng Y, et al. Cellulose-based separators for lithium batteries: source, preparation and performance. Chem Eng J. 2023;471:144593.

[33]

Jusner P, Schwaiger E, Potthast A, Rosenau T. Thermal stability of cellulose insulation in electrical power transformers-a review. Carbohydr Polym. 2021;252:117196.

[34]

Chun S-J, Choi E-S. Lee E-H, Kim JH, Lee SY, Lee SY. Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. J Mater Chem. 2012;22:16618-16626.

[35]

Wang Z, Pan R, Ruan C, Edström K, Strømme M, Nyholm L. Redox-active separators for lithium-ion batteries. Adv Sci. 2018;5:1700663.

[36]

Roy JJ, Rarotra S, Krikstolaityte V, et al. Green recycling methods to treat lithium-ion batteries e-waste: a circular approach to sustainability. Adv Mater. 2022;34:2103346.

[37]

Costa CM, Barbosa JC, Gonçalves R, Castro H, Campo FJD, Lanceros-Méndez S. Recycling and environmental issues of lithium-ion batteries: advances, challenges and opportunities. Energy Storage Mater. 2021;37:433-465.

[38]

Singh G, Chandoha-Lee C, Zhang W, Renneckar S, Vikesland PJ, Pruden A. Biodegradation of nanocrystalline cellulose by two environmentally-relevant consortia. Water Res. 2016;104:137-146.

[39]

Chen M, Zheng J, Liu Y, et al. Marrying ester group with lithium salt: cellulose-acetate-enabled lif-enriched interface for stable lithium metal anodes. Adv Funct Mater. 2021;31:2102228.

[40]

Liu X, Han Q, Ma Q, Wang Y, Liu C. Cellulose-acetate coating by integrating ester group with zinc salt for dendrite-free zn metal anodes. Small. 2022;18:2203327.

[41]

Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 2011;40:3941-3994.

[42]

Houston RW, Abdoulmoumine NH. Investigation of the thermal deconstruction of β-β′ and 4-o-5 linkages in lignin model oligomers by density functional theory (DFT). RSC Adv. 2023;13:6181-6190.

[43]

Zhang B, Guo T, Li Z, et al. Transition-metal-free synthesis of pyrimidines from lignin β-O-4 segments via a one-pot multi-component reaction. Nat Commun. 2022;13:3365.

[44]

Thakur VK, Thakur MK, Raghavan P, Kessler MR. Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng. 2014;2:1072-1092.

[45]

Bajwa DS, Pourhashem G, Ullah AH, Bajwa SG. A concise review of current lignin production, applications, products and their environmental impact. Ind Crops Prod. 2019;139:111526.

[46]

Ragauskas AJ, Beckham GT, Biddy MJ, et al. Lignin valorization: improving lignin processing in the biorefinery. Science. 2014;344:1246843.

[47]

Mainka H, Täger O, Körner E, et al. Lignin-an alternative precursor for sustainable and cost-effective automotive carbon fiber. J Mater Res Technol. 2015;4:283-296.

[48]

Bertella S, Luterbacher JS. Lignin functionalization for the production of novel materials. Trends Chem. 2020;2:440-453.

[49]

Wang D, Lee SH, Kim J, Park CB. “Waste to wealth”: lignin as a renewable building block for energy harvesting/storage and environmental remediation. ChemSusChem. 2020;13:2807-2827.

[50]

Kai D, Tan MJ, Chee PL, Chua YK, Yap YL, Loh XJ. Towards lignin-based functional materials in a sustainable world. Green Chem. 2016;18:1175-1200.

[51]

Fang W, Yang S, Wang X-L. Yuan T-Q, Sun R-C. Manufacture and application of lignin-based carbon fibers (LCFS) and lignin-based carbon nanofibers (LCNFS). Green Chem. 2017;19:1794-1827.

[52]

Poveda-Giraldo JA, Solarte-Toro JC, Cardona Alzate CA. The potential use of lignin as a platform product in biorefineries: a review. Renew Sustain Energy Rev. 2021;138:110688.

[53]

Chen C, Hu L. Nanocellulose toward advanced energy storage devices: structure and electrochemistry. Acc Chem Res. 2018;51:3154-3165.

[54]

Peter S, Lyczko N, Gopakumar D, Maria HJ, Nzihou A, Thomas S. Chitin and chitosan based composites for energy and environmental applications: a review. Waste Biomass Valorization. 2021;12:4777-4804.

[55]

Zhang Q, Chen Y, Wei P, Zhong Y, Chen C, Cai J. Extremely strong and tough chitosan films mediated by unique hydrated chitosan crystal structures. Mater Today. 2021;51:27-38.

[56]

Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro-and nanoparticles in drug delivery. J Control Release. 2004;100:5-28.

[57]

Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan-a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci. 2011;36:981-1014.

[58]

Croisier F, Jérôme C. Chitosan-based biomaterials for tissue engineering. Eur Polym J. 2013;49:780-792.

[59]

Hapuarachchi SNS, Wasalathilake KC, Nerkar JY, Jaatinen E, O’Mullane AP, Yan C. Mechanically robust tapioca starch composite binder with improved ionic conductivity for sustainable lithium-ion batteries. ACS Sust Chem Eng. 2020;8:9857-9865.

[60]

Basiak E, Lenart A, Debeaufort F. Effect of starch type on the physico-chemical properties of edible films. Int J Biiol Macromol. 2017;98:348-356.

[61]

Tharanathan RN. Biodegradable films and composite coatings: past, present and future. Trends Food Sci Technol. 2003;14:71-78.

[62]

Singh N, Singh J, Kaur L, Singh Sodhi N, Singh Gill B. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 2003;81:219-231.

[63]

Wang C, Fu X, Lin S, Liu J, Zhong W-H. A protein-enabled protective film with functions of self-adapting and anion-anchoring for stabilizing lithium-metal batteries. J Energy Chem. 2022;64:485-495.

[64]

Chen M, Fu X, Liu J, Chen Z, Zhong W-H. A protein-based janus separator for trapping polysulfides and regulating ion transport in lithium−sulfur batteries. ChemSusChem. 2021;14:2226-2236.

[65]

Fu X, Li C, Wang Y, Scudiero L, Liu J, Zhong WH. Self-assembled protein nanofilter for trapping polysulfides and promoting Li+transport in lithium-sulfur batteries. J Phys Chem Lett. 2018;9:2450-2459.

[66]

Zhao Y, Deng L, Wang J, Xu H, Lu JR. Solvent controlled structural transition of KI4K self-assemblies: from nanotubes to nanofibrils. Langmuir. 2015;31:12975-12983.

[67]

Cui H, Muraoka T, Cheetham AG, Stupp SI. Self-assembly of giant peptide nanobelts. Nano Lett. 2009;9:945-951.

[68]

Goldberger JE, Berns EJ, Bitton R, Newcomb CJ, Stupp SI. Electrostatic control of bioactivity. Angew Chem Int Ed. 2011;50:6292-6295.

[69]

Chen M, Fu X, Chen Z, Liu J, Zhong W-H. Protein-engineered functional materials for bioelectronics. Adv Funct Mater. 2021;31:2006744.

[70]

Liu D, Zhong T, Chang PR, Li K, Wu Q. Starch composites reinforced by bamboo cellulosic crystals. Bioresour Technol. 2010;101:2529-2536.

[71]

Tanaka F, Iwata T. Estimation of the elastic modulus of cellulose crystal by molecular mechanics simulation. Cellulose. 2006;13:509-517.

[72]

Saito T, Isogai A. Wet strength improvement of tempo-oxidized cellulose sheets prepared with cationic polymers. Ind Eng Chem Res. 2007;46:773-780.

[73]

Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A. Homogeneous suspensions of individualized microfibrils from tempo-catalyzed oxidation of native cellulose. Biomacromolecules. 2006;7:1687-1691.

[74]

Bauli CR, Rocha DB, de Oliveira SA, Rosa DS. Cellulose nanostructures from wood waste with low input consumption. J Clean Prod. 2019;211:408-416.

[75]

Isogai A, Saito T, Fukuzumi H. Tempo-oxidized cellulose nanofibers. Nanoscale. 2011;3:71-85.

[76]

Du H, Liu C, Mu X, et al. Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of fecl3-catalyzed formic acid hydrolysis. Cellulose. 2016;23:2389-2407.

[77]

Nakagaito AN, Iwamoto S, Yano H. Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A. 2005;80:93-97.

[78]

Ye J, Zheng S, Zhang Z, et al. Bacterial cellulose production by Acetobacter xylinum ATCC 23767 using tobacco waste extract as culture medium. Bioresour Technol. 2019;274:518-524.

[79]

Hu W, Chen S, Yang Z, Liu L, Wang H. Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. J Phys Chem B. 2011;115:8453-8457.

[80]

Illa MP, Sharma CS, Khandelwal M. Tuning the physiochemical properties of bacterial cellulose: effect of drying conditions. J Mater Sci. 2019;54:12024-12035.

[81]

Yano H, Sugiyama J, Nakagaito AN, et al. Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater. 2005;17:153-155.

[82]

Sheng J, Chen T, Wang R, Zhang Z, Hua F, Yang R. Ultra-light cellulose nanofibril membrane for lithium-ion batteries. J Membr Sci. 2020;595:117550.

[83]

Lv D, Chai J, Wang P, et al. Pure cellulose lithium-ion battery separator with tunable pore size and improved working stability by cellulose nanofibrils. Carbohydr Polym. 2021;251:116975.

[84]

Thiangtham S, Runt J, Saito N, Manuspiya H. Fabrication of biocomposite membrane with microcrystalline cellulose (MCC) extracted from sugarcane bagasse by phase inversion method. Cellulose. 2020;27:1367-1384.

[85]

Weng B, Xu F, Alcoutlabi M, Mao Y, Lozano K. Fibrous cellulose membrane mass produced via forcespinning® for lithium-ion battery separators. Cellulose. 2015;22:1311-1320.

[86]

Liu J, Xu R, Yan C, et al. In situ regulated solid electrolyte interphase via reactive separators for highly efficient lithium metal batteries. Energy Storage Mater. 2020;30:27-33.

[87]

Liu A, Jiang Z, Li S, et al. A degradable membrane based on lignin-containing cellulose for high-energy lithium-ion batteries. Int J Biiol Macromol. 2022;213:690-698.

[88]

Pereira RFP, Brito-Pereira R, Gonçalves R, et al. Silk fibroin separators: a step toward lithium-ion batteries with enhanced sustainability. ACS Appl Mater Interfaces. 2018;10:5385-5394.

[89]

Zhang Z, Li Y, Cui X, et al. Understanding the advantageous features of bacterial cellulose-based separator in Li-S battery. Adv Mater Interfaces. 2023;10:2201730.

[90]

Huang J, Yu L, Wang S, et al. An ultrathin nanocellulosic ion redistributor for long-life zinc anode. Innov Mater. 2023;1:100029.

[91]

Trache D, Hussin MH, Hui Chuin CT, et al. Microcrystalline cellulose: isolation, characterization and bio-composites application-a review. Int J Biiol Macromol. 2016;93:789-804.

[92]

Zhao Y, Xu C, Xing C, et al. Fabrication and characteristics of cellulose nanofibril films from coconut palm petiole prepared by different mechanical processing. Ind Crops Prod. 2015;65:96-101.

[93]

Teng G, Lin S, Xu D, Heng Y, Hu D. Renewable cellulose separator with good thermal stability prepared via phase inversion for high-performance supercapacitors. J Mater Sci: Mater Electron. 2020;31:7916-7926.

[94]

Mathew AP, Oksman K, Sain M. Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci. 2005;97:2014-2025.

[95]

Petersson L, Oksman K. Biopolymer based nanocomposites: comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Compos Sci Technol. 2006;66:2187-2196.

[96]

Rico M, Rodríguez-Llamazares S, Barral L, Bouza R, Montero B. Processing and characterization of polyols plasticized-starch reinforced with microcrystalline cellulose. Carbohydr Polym. 2016;149:83-93.

[97]

Fox SC, Li B, Xu D, Edgar KJ. Regioselective esterification and etherification of cellulose: a review. Biomacromolecules. 2011;12:1956-1972.

[98]

Li H, Deng Y, Liu B, et al. Preparation of nanocapsules via the self-assembly of kraft lignin: a totally green process with renewable resources. ACS Sustainable Chemistry &Engineering. 2016;4:1946-1953.

[99]

Tejado A, Peña C, Labidi J, Echeverria JM, Mondragon I. Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis. Bioresour Technol. 2007;98:1655-1663.

[100]

Uddin M-J, Alaboina PK, Zhang L, Cho S-J. A low-cost, environment-friendly lignin-polyvinyl alcohol nanofiber separator using a water-based method for safer and faster lithium-ion batteries. Mater Sci Eng B. 2017;223:84-90.

[101]

Zhao M, Wang J, Chong C, Yu X, Wang L, Shi Z. An electrospun lignin/polyacrylonitrile nonwoven composite separator with high porosity and thermal stability for lithium-ion batteries. RSC Adv. 2015;5:101115-101120.

[102]

Lei T, Chen W, Lv W, et al. Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries. Joule. 2018;2:2091-2104.

[103]

Chen C, Zhang Y, Li Y, et al. All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ Sci. 2017;10:538-545.

[104]

Duan B, Chang C, Zhang L. Structure and properties of films fabricated from chitin solution by coagulating with heating. J Appl Polym Sci. 2014;131:39538.

[105]

Zhang T-W, Chen J-L. Tian T, et al. Sustainable separators for high-performance lithium ion batteries enabled by chemical modifications. Adv Funct Mater. 2019;29:1902023.

[106]

Alias SS, Ariff ZM, Mohamad AA. Porous membrane based on chitosan-siO2 for coin cell proton battery. Ceram Int. 2015;41:5484-5491.

[107]

Cui C, Ji N, Wang Y, Xiong L, Sun Q. Bioactive and intelligent starch-based films: a review. Trends Food Sci Technol. 2021;116:854-869.

[108]

Reizabal A, Fidalgo-Marijuan A, Gonçalves R, et al. Silk fibroin and sericin polymer blends for sustainable battery separators. J Colloid Interface Sci. 2022;611:366-376.

[109]

Chen M, Li C, Fu X, et al. Let it catch: A short-branched protein for efficiently capturing polysulfides in lithium-sulfur batteries. Adv Energy Mater. 2020;10:1903642.

[110]

Wang Z, Xu C, Qi L, Chen C. Chemical modification of polysaccharides for sustainable bioplastics. Trends Chem. 2024;6:314-331.

[111]

Chiappone A, Nair J, Gerbaldi C, Zeno E, Bongiovanni R. Flexible and high performing polymer electrolytes obtained by uv-induced polymer-cellulose grafting. RSC Adv. 2014;4:40873-40881.

[112]

Hu J, Liu Y, Zhang M, He J, Ni P. A separator based on cross-linked nano-siO2 and cellulose acetate for lithium-ion batteries. Electrochim Acta. 2020;334:135585.

[113]

Li H, Wu D, Wu J, Dong LY, Zhu YJ, Hu X. Flexible, high-wettability and fire-resistant separators based on hydroxyapatite nanowires for advanced lithium-ion batteries. Adv Mater. 2017;29:1703548.

[114]

Deng X, Huang Y, Song A, et al. Gel polymer electrolyte with high performances based on biodegradable polymer polyvinyl alcohol composite lignocellulose. Mater Chem Phys. 2019;229:232-241.

[115]

Zeng X, Liu Y, He R, et al. Tissue paper-based composite separator using nano-SiO2 hybrid crosslinked polymer electrolyte as coating layer for lithium ion battery with superior security and cycle stability. Cellulose. 2022;29:3985-4000.

[116]

Su Z, He Y, Liu S, et al. Uniform lithium deposition achieved by SnO2/hydroxypropyl methyl cellulose composite separator toward ultrastable lithium metal batteries. ACS Appl Energy Mater. 2022;5:10264-10275.

[117]

Huang F, Xu Y, Peng B, et al. Coaxial electrospun cellulose-core fluoropolymer-shell fibrous membrane from recycled cigarette filter as separator for high performance lithium-ion battery. ACS Sustain Chem Eng. 2015;3:932-940.

[118]

Yao H, Yan K, Li W, et al. Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface. Energy Environ Sci. 2014;7:3381-3390.

[119]

Suharto Y, Lee Y, Yu J-S. Choi W, Kim KJ. Microporous ceramic coated separators with superior wettability for enhancing the electrochemical performance of sodium-ion batteries. J Power Sources. 2018;376:184-190.

[120]

Chao C-Y, Feng Y-F. Hua K, et al. Enhanced wettability and thermal stability of polypropylene separators by organic-inorganic coating layer for lithium-ion batteries. J Appl Polym Sci. 2018;135:46478.

[121]

Liu Z, Hu Z, Jiang X, Zhang Y, Wang X, Zhang S. Multi-functional ZnS quantum dots/graphene aerogel modified separator for high performance lithium-sulfur batteries. Electrochim Acta. 2022;422:140496.

[122]

Zhang J, Hu J, Li X, et al. High-performance MoS2 quantum dots/graphene functionalized separator and its failure analysis under high sulfur loading. Chem Eng J. 2023;456:140972.

[123]

Xia S, Huang W, Yan W, et al. A separator modified with rutile titania and three-dimensional interconnected graphene-like carbon for advanced Li−S batteries. ChemElectroChem. 2022;9:e202200301.

[124]

Chen F, Chen Z, Zhou J, et al. Two-in-one integrated sulfur cathode with multifunctional multiwalled carbon nanotube/polyacrylic acid film for high-performance lithium sulfur batteries. Appl Surf Sci. 2021;541:148497.

[125]

Li D, Wang W, Liu J, He M. Hierarchical lamellar single-walled carbon nanotube aerogel interlayers for stable lithium-sulfur batteries with high-sulfur-loading. Chem Eng J. 2023;461:142031.

[126]

Pan R, Sun R, Wang Z, et al. Double-sided conductive separators for lithium-metal batteries. Energy Storage Mater. 2019;21:464-473.

[127]

Li L, Peng J, Jia X, et al. Pbc@cellulose-filter paper separator design with efficient ion transport properties toward stabilized zinc-ion battery. Electrochim Acta. 2022;430:141129.

[128]

Cao J, Zhang D, Gu C, et al. Modulating zn deposition via ceramic-cellulose separator with interfacial polarization effect for durable zinc anode. Nano Energy. 2021;89:106322.

[129]

Zuo X, Wu J, Ma X, et al. A poly(vinylidene fluoride)/ethyl cellulose and amino-functionalized nano-SiO2 composite coated separator for 5 V high-voltage lithium-ion batteries with enhanced performance. J Power Sources. 2018;407:44-52.

[130]

Kim J-H, Kim J-H. Choi E-S, et al. Colloidal silica nanoparticle-assisted structural control of cellulose nanofiber paper separators for lithium-ion batteries. J Power Sources. 2013;242:533-540.

[131]

Delaporte N, Perea A, Paolella A, et al. Alumina-flame retardant separators toward safe high voltage Li-ion batteries. J Power Sources. 2021;506:230189.

[132]

Li L, Li H, Wang Y, Zheng S, Zou Y, Ma Z. Poly(vinylidenefluoride-hexafluoropropylene)/cellulose/carboxylic TiO2 composite separator with high temperature resistance for lithium-ion batteries. Ionics. 2020;26:4489-4497.

[133]

Rani P, Kumar KS, Pathak AD, Sharma CS. Pyrolyzed pencil graphite coated cellulose paper as an interlayer: an effective approach for high-performance lithium-sulfur battery. Appl Surf Sci. 2020;533:147483.

[134]

Xu H, Jing M, Li J, et al. Safety-enhanced flexible polypropylene oxide-ZrO2 composite solid electrolyte film with high room-temperature ionic conductivity. ACS Sustain Chem Eng. 2021;9:11118-11126.

[135]

Zhou X, Zhou Y, Yu L, et al. Gel polymer electrolytes for rechargeable batteries toward wide-temperature applications. Chem Soc Rev. 2024;53:5291-5337.

[136]

Jovanović P, Mirshekarloo MS, Hill MR, Hollenkamp AF, Majumder M, Shaibani M. Separator design variables and recommended characterization methods for viable lithium-sulfur batteries. Adv. Mater. Technol. 2021;6:2001136.

[137]

Pan R, Wang Z, Sun R, et al. Thickness difference induced pore structure variations in cellulosic separators for lithium-ion batteries. Cellulose. 2017;24:2903-2911.

[138]

Zhang G, Zhang D, Yang R, et al. A multifunctional wood-derived separator towards the problems of semi-open system in lithium-oxygen batteries. Adv Funct Mater. 2023;33:2304981.

[139]

Ye Y, Yu L, Lizundia E, Zhu Y, Chen C, Jiang F. Cellulose-based ionic conductor: an emerging material toward sustainable devices. Chem Rev. 2023;123:9204-9264.

[140]

Li X, Yuan L, Liu D, et al. Elevated lithium ion regulation by a “natural silk”modified separator for high-performance lithium metal anode. Adv Funct Mater. 2021;31:2100537.

[141]

Pan R, Xu X, Sun R, et al. Nanocellulose modified polyethylene separators for lithium metal batteries. Small. 2018;14:1704371.

[142]

Yang Y, Li N, Lv T, et al. Natural wood-derived free-standing films as efficient and stable separators for high-performance lithium ion batteries. Nanoscale Adv. 2022;4:1718-1726.

[143]

Tu W-B, Liang S, Song L-N. et al. Nanoengineered functional cellulose ionic conductor toward high-performance all-solid-state zinc-ion battery. Adv Funct Mater. 2024;34(25):2316137.

[144]

Huang C, Ji H, Yang Y, et al. Tempo-oxidized bacterial cellulose nanofiber membranes as high-performance separators for lithium-ion batteries. Carbohydr Polym. 2020;230:115570.

[145]

Feng X, Ouyang M, Liu X, Lu L, Xia Y, He X. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 2018;10:246-267.

[146]

Liu X, Ren D, Hsu H, et al. Thermal runaway of lithium-ion batteries without internal short circuit. Joule. 2018;2:2047-2064.

[147]

Duffner F, Kronemeyer N, Tübke J, Leker J, Winter M, Schmuch R. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat Energy. 2021;6:123-134.

[148]

Walter M, Kovalenko MV, Kravchyk KV. Challenges and benefits of post-lithium-ion batteries. New J Chem. 2020;44:1677-1683.

[149]

Sawicki M, Shaw LL. Advances and challenges of sodium ion batteries as post lithium ion batteries. RSC Adv. 2015;5:53129-53154.

[150]

Ren W, Zheng Y, Cui Z, Tao Y, Li B, Wang W. Recent progress of functional separators in dendrite inhibition for lithium metal batteries. Energy Storage Mater. 2021;35:157-168.

[151]

Duan H, Yin Y-X. Shi Y, et al. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers. J Am Chem Soc. 2018;140:82-85.

[152]

Yang T, Sun Y, Qian T, et al. Lithium dendrite inhibition via 3d porous lithium metal anode accompanied by inherent sei layer. Energy Storage Mater. 2020;26:385-390.

[153]

Barghamadi M, Kapoor A, Wen C. A review on Li-S batteries as a high efficiency rechargeable lithium battery. J Electrochem Soc. 2013;160: a1256-a1263.

[154]

Shen X, Liu H, Cheng X-B. Yan C, Huang J-Q. Beyond lithium ion batteries: higher energy density battery systems based on lithium metal anodes. Energy Storage Mater. 2018;12:161-175.

[155]

Lu Y, Tikekar M, Mohanty R, Hendrickson K, Ma L, Archer LA. Stable cycling of lithium metal batteries using high transference number electrolytes. Adv Energy Mater. 2015;5:1402073.

[156]

Li Y, Gao T, Ni D, et al. Two birds with one stone: interfacial engineering of multifunctional janus separator for lithium-sulfur batteries. Adv Mater. 2022;34:2107638.

[157]

Li S, Huang Y, Luo C, et al. Stabilize lithium metal anode through constructing a lithiophilic viscoelastic interface based on hydroxypropyl methyl cellulose. Chem Eng J. 2020;399:125687.

[158]

Li W, Wang S, Fan Z, Li S, Newman N. Oxidized bacterial cellulose functionalized with siO2 nanoparticles as a separator for lithium-metal and lithium-sulfur batteries. Cellulose. 2023;30:481-493.

[159]

Steiger J, Kramer D, Mönig R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. J Power Sources. 2014;261:112-119.

[160]

Hernandez-Maya R, Rosas O, Saunders J, Castaneda H. Dynamic characterization of dendrite deposition and growth in li-surface by electrochemical impedance spectroscopy. J Electrochem Soc. 2015;162: a687-a696.

[161]

Golozar M, Hovington P, Paolella A, et al. In situ scanning electron microscopy detection of carbide nature of dendrites in Li-polymer batteries. Nano Lett. 2018;18:7583-7589.

[162]

Li S, Zhang W, Zheng J, Lv M, Song H, Du L. Inhibition of polysulfide shuttles in Li-S batteries: modified separators and solid-state electrolytes. Adv Energy Mater. 2021;11:2000779.

[163]

Waluś S, Barchasz C, Bouchet R, Alloin F. Electrochemical impedance spectroscopy study of lithium-sulfur batteries: useful technique to reveal the Li/S electrochemical mechanism. Electrochim Acta. 2020;359:136944.

[164]

Xu R, Belharouak I, Zhang X, et al. Insight into sulfur reactions in Li-s batteries. ACS Appl Mater Interfaces. 2014;6:21938-21945.

[165]

Zhang P, Zhao Y, Li Y, et al. Revealing the selective bifunctional electrocatalytic sites via in situ irradiated X-ray photoelectron spectroscopy for lithium-sulfur battery. Adv Sci. 2023;10:2206786.

[166]

Abbas SA, Ding J, Wu SH, et al. Modified separator performing dual physical/chemical roles to inhibit polysulfide shuttle resulting in ultrastable Li-S batteries. ACS Nano. 2017;11:12436-12445.

[167]

Huang X. Separator technologies for lithium-ion batteries. J Solid State Electrochem. 2011;15:649-662.

[168]

Li J, Luo K, Yu J, Wang Y, Zhu J, Hu Z. Promising free-standing polyimide membrane via solution blow spinning for high performance lithium-ion batteries. Ind Eng Chem Res. 2018;57:12296-12305.

[169]

Lamm ME, Li K, Qian J, et al. Recent advances in functional materials through cellulose nanofiber templating. Adv Mater. 2021;33:2005538.

[170]

Fu J, Wang H, Xiao P, Zeng C, Sun Q, Li H. A high strength, anti-corrosion and sustainable separator for aqueous zinc-based battery by natural bamboo cellulose. Energy Storage Mater. 2022;48:191-191.f6.

[171]

Yang Y, Huang C, Gao G, Hu C, Luo L, Xu J. Aramid nanofiber/bacterial cellulose composite separators for lithium-ion batteries. Carbohydr Polym. 2020;247:116702.

[172]

Gao H-L, Zhao R, Cui C, et al. Bioinspired hierarchical helical nanocomposite macrofibers based on bacterial cellulose nanofibers. Natl Sci Rev. 2020;7:73-83.

[173]

Deng J, Cao D, Yang X, Zhang G. Cross-linked cellulose/carboxylated polyimide nanofiber separator for lithium-ion battery application. Chem Eng J. 2022;433:133934.

[174]

Yang P, Li J, Lee SW, Fan HJ. Printed zinc paper batteries. Adv Sci. 2022;9:2103894.

[175]

Jiang B, Chen C, Liang Z, et al. Lignin as a wood-inspired binder enabled strong, water stable, and biodegradable paper for plastic replacement. Adv Funct Mater. 2020;30:1906307.

[176]

Du Z, Su Y, Qu Y, et al. A mechanically robust, biodegradable and high performance cellulose gel membrane as gel polymer electrolyte of lithium-ion battery. Electrochim Acta. 2019;299:19-26.

[177]

Xu D, Jin J, Chen C, Wen Z. From nature to energy storage: a novel sustainable 3d cross-linked chitosan-PEGGE-based gel polymer electrolyte with excellent lithium-ion transport properties for lithium batteries. ACS Appl Mater Interfaces. 2018;10:38526-38537.

[178]

Zhang F, Lan X, Peng H, Hu X, Zhao QA. “trojan horse”camouflage strategy for high-performance cellulose paper and separators. Adv Funct Mater. 2020;30:2002169.

[179]

Zhang SS. A review on the separators of liquid electrolyte li-ion batteries. J Power Sources. 2007;164:351-364.

[180]

Wang N, Liu W, Liao H, Li Z, Chen Y, Zeng G. Pure cellulose nanofiber separator with high ionic conductivity and cycling stability for lithium-ion batteries. Int J Biiol Macromol. 2023;250:126078.

[181]

Pang Q, Liang X, Kwok CY, Nazar LF. Review-the importance of chemical interactions between sulfur host materials and lithium polysulfides for advanced lithium-sulfur batteries. J Electrochem Soc. 2015;162: a2567-a2576.

[182]

Xie W, Liu W, Dang Y, Tang A, Luo Y. Unveiling the effect of homogenization degree on electrochemical performance of tempo-mediated oxidized cellulose separators for lithium-ion batteries. Eur Polym J. 2020;127:109587.

[183]

Porosoff MD, Yan B, Chen JG. Catalytic reduction of CO2 by H2 for the synthesis of CO, methanol, and hydrocarbons: Challenges, challenges, and opportunities. Energy Environ Sci. 2016;9:62-73.

[184]

Jeon DH, Song J-H. Yun J, Lee J-W. Mechanistic insight into wettability enhancement of lithium-ion batteries using a ceramic-coated layer. ACS Nano. 2023;17:1305-1314.

[185]

Li J, Dai L, Wang Z, et al. Cellulose nanofiber separator for suppressing shuttle effect and Li dendrite formation in lithium-sulfur batteries. J Energy Chem. 2022;67:736-744.

[186]

Asghar MR, Zhang Y, Wu A, et al. Preparation of microporous cellulose/poly(vinylidene fluoride-hexafluoropropylene) membrane for lithium ion batteries by phase inversion method. J Power Sources. 2018;379:197-205.

[187]

Guo T, Song J, Jin Y, Sun Z, Li L. Thermally stable and green cellulose-based composites strengthened by styrene-co-acrylate latex for lithium-ion battery separators. Carbohydr Polym. 2019;206:801-810.

[188]

Yang S, Zhang Y, Zhang Y, et al. Designing anti-swelling nanocellulose separators with stable and fast ion transport channels for efficient aqueous zinc-ion batteries. Adv Funct Mater. 2023;33:2304280.

[189]

Liu M, Zhang P, Gou L, Hou Z, Huang B. Enhancement on the thermostability and wettability of lithium-ion batteries separator via surface chemical modification. Mater Lett. 2017;208:98-101.

[190]

Lagadec MF, Zahn R, Wood V. Characterization and performance evaluation of lithium-ion battery separators. Nat Energy. 2019;4:16-25.

[191]

Raafat L, Wicklein B, Majer G, et al. Shape-conformable, eco-friendly cellulose aerogels as high-performance battery separators. ACS Appl Energy Mater. 2021;4:763-774.

[192]

Huang Q, Zhao C, Li X. Enhanced electrolyte retention capability of separator for lithium-ion battery constructed by decorating ZIF-67 on bacterial cellulose nanofiber. Cellulose. 2021;28:3097-3112.

[193]

Liu J, Yang K, Mo Y, et al. Highly safe lithium-ion batteries: high strength separator from polyformaldehyde/cellulose nanofibers blend. J Power Sources. 2018;400:502-510.

[194]

Xu Q, Kong Q, Liu Z, et al. Cellulose/polysulfonamide composite membrane as a high performance lithium-ion battery separator. ACS Sustain Chem Eng. 2014;2:194-199.

[195]

Zong Y, He H, Wang Y, et al. Functionalized separator strategies toward advanced aqueous zinc-ion batteries. Adv Energy Mater. 2023;13:2300403.

[196]

Gao Z, Sun H, Fu L, et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv Mater. 2018;30:1705702.

[197]

Chen L, Fan LZ. Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte. Energy Storage Mater. 2018;15:37-45.

[198]

Zhu M, Tan C, Fang Q, Gao L, Sui G, Yang X. High performance and biodegradable skeleton material based on soy protein isolate for gel polymer electrolyte. ACS Sustain Chem Eng. 2016;4:4498-4505.

[199]

Qu H, Zhang J, Du A, et al. Multifunctional sandwich-structured electrolyte for high-performance lithium-sulfur batteries. Adv Sci. 2018;5:1700503.

[200]

Hou Y, Chen Z, Zhang R, Cui H, Yang Q, Zhi C. Recent advances and interfacial challenges in solid-state electrolytes for rechargeable Li-air batteries. Exploration. 2023;3:20220051.

[201]

Hu B, Han S, Zhang J, et al. Toward robust solid-state lithium metal batteries by stabilizing a polyethylene oxide-based solid electrolyte interface with a biomass polymer filler. J Colloid Interface Sci. 2023;650:203-210.

[202]

Shi Z, Guo W, Zhou L, Xu Q, Min Y. A 3D fiber skeleton reinforced peo-based polymer electrolyte for high rate and ultra-long cycle all-solid-state batteries. J Mater Chem A. 2021;9:21057-21070.

[203]

Zeng F, Sun Y, Hui B, et al. Three-dimensional porous alginate fiber membrane reinforced peo-based solid polymer electrolyte for safe and high-performance lithium ion batteries. ACS Appl Mater Interfaces. 2020;12:43805-43812.

[204]

Wang Y, Fang T, Wang S, Wang C, Li D, Xia Y. Alginate fiber-grafted polyetheramine-driven high ion-conductive and flame-retardant separator and solid polymer electrolyte for lithium metal batteries. ACS Appl Mater Interfaces. 2022;14:56780-56789.

[205]

Yin S, Huang Y, Han J, et al. Cellulosic all-solid-state electrolyte for lithium batteries fabricated via bio-synthetic avenue. Compos B Eng. 2023;254:110566.

[206]

Yang C, Wu Q, Xie W, et al. Copper-coordinated cellulose ion conductors for solid-state batteries. Nature. 2021;598:590-596.

[207]

Lin Y, Li J, Liu K, Liu Y, Liu J, Wang X. Unique starch polymer electrolyte for high capacity all-solid-state lithium sulfur battery. Green Chem. 2016;18:3796-3803.

[208]

Ma L, Schroeder MA, Borodin O, et al. Realizing high zinc reversibility in rechargeable batteries. Nat Energy. 2020;5:743-749.

[209]

Yuan D, Manalastas Jr. W, Zhang L, et al. Lignin@nafion membranes forming Zn solid-electrolyte interfaces enhance the cycle life for rechargeable zinc-ion batteries. ChemSusChem. 2019;12:4889-4900.

[210]

Nita C, Zhang B, Dentzer J, Matei Ghimbeu C. Hard carbon derived from coconut shells, walnut shells, and corn silk biomass waste exhibiting high capacity for Na-ion batteries. J Energy Chem. 2021;58:207-218.

[211]

Islam MA, Ong HL, Sezali NAA, et al. One-pot preparation of highly porous paddy waste derived-cellulose-silica nanocomposite membrane separator for advanced performances of supercapacitor. Cellulose. 2023;30:1637-1656.

[212]

Ventura-Cruz S, Tecante A. Nanocellulose and microcrystalline cellulose from agricultural waste: review on isolation and application as reinforcement in polymeric matrices. Food Hydrocolloids. 2021;118:106771.

[213]

Wu S, Shi J, Nie X, et al. Microporous cyclodextrin film with funnel-type channel polymerized on electrospun cellulose acetate membrane as separators for strong trapping polysulfides and boosting charging in lithium-sulfur batteries. Energy Environ Mater. 2023;6:e12319.

[214]

Huang J, Jiang H, Wu F, Xiong X, Han K. Natural halloysite nanotubes coated commercial paper or waste newspaper as highly-thermal-stable separator for lithium-ion batteries. Adv. Mater. Technol. 2022;7:2200075.

[215]

Kanbua C, Rattanawongwiboon T, Khamlue R, Ummartyotin S. Green synthesis of sulfonated cellulose/polyether block amide/polyethylene glycol diacrylate (SC/PEBAX/PEGDA) composite membrane by gamma radiation and sulfonation techniques for battery application. Int J Biiol Macromol. 2023;248:125844.

[216]

Li Q, McGinnis S, Sydnor C, Wong A, Renneckar S. Nanocellulose life cycle assessment. ACS Sustain Chem Eng. 2013;1:919-928.

[217]

Chavan C, Bhajantri RF, Cyriac V, Ismayil , Bulla SS, Sakthipandi K. Investigations on anomalous behavior of ionic conductivity in napF6 salt loaded hydroxyethyl cellulose biodegradable polymer electrolyte for energy storage applications. Polym Adv Technol. 2023;34:1698-1715.

[218]

Lee MH, Lee J, Jung S-K. et al. A biodegradable secondary battery and its biodegradation mechanism for eco-friendly energy-storage systems. Adv Mater. 2021;33:2004902.

RIGHTS & PERMISSIONS

2024 The Authors. Battery Energy published by Xijing University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

171

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/